Let be a family of random walks with For ε↓0 under certain conditions the random walk U(∊)n converges to an oscillating random walk. The ladder point distributions and expectations converge correspondingly. Let M∊ = max {U(∊)n, n ≧ 0}, v0 = min {n : U(∊)n = M∊}, v1 = max {n : U(∊)n = M∊}. The joint limiting distribution of ∊2σ∊–2v0 and ∊σ∊–2M∊ is determined. It is the same as for ∊2σ∊–2v1 and ∊σ–2∊M∊. The marginal ∊σ–2∊M∊ gives Kingman's heavy traffic theorem. Also lim ∊–1P(M∊ = 0) and lim ∊–1P(M∊ < x) are determined. Proofs are by direct comparison of corresponding probabilities for U(∊)n and for a special family of random walks related to MI/M/1 queues, using the central limit theorem.