We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess ability of National Early Warning Score 2 (NEWS2), systemic inflammatory response syndrome (SIRS), quick Sequential Organ Failure Assessment (qSOFA), and CRB-65 calculated at the time of intensive care unit (ICU) admission for predicting ICU mortality in patients of laboratory confirmed coronavirus disease 2019 (COVID-19) infection.
Methods:
This prospective data analysis was based on chart reviews for laboratory confirmed COVID-19 patients admitted to ICUs over a 1-mo period. The NEWS2, CRB-65, qSOFA, and SIRS were calculated from the first recorded vital signs upon admission to ICU and assessed for predicting mortality.
Results:
Total of 140 patients aged between 18 and 95 y were included in the analysis of whom majority were >60 y (47.8%), with evidence of pre-existing comorbidities (67.1%). The most common symptom at presentation was dyspnea (86.4%). Based upon the receiver operating characteristics area under the curve (AUC), the best discriminatory power to predict ICU mortality was for the CRB-65 (AUC: 0.720 [95% confidence interval [CI]: 0.630-0.811]) followed closely by NEWS2 (AUC: 0.712 [95% CI: 0.622-0.803]). Additionally, a multivariate Cox regression model showed Glasgow Coma Scale score at time of admission (P < 0.001; adjusted hazard ratio = 0.808 [95% CI: 0.715-0.911]) to be the only significant predictor of ICU mortality.
Conclusions:
CRB-65 and NEWS2 scores assessed at the time of ICU admission offer only a fair discriminatory value for predicting mortality. Further evaluation after adding laboratory markers such as C-reactive protein and D-dimer may yield a more useful prediction model. Much of the earlier data is from developed countries and uses scoring at time of hospital admission. This study was from a developing country, with the scores assessed at time of ICU admission, rather than the emergency department as with existing data from developed countries, for patients with moderate/severe COVID-19 disease. Because the scores showed some utility for predicting ICU mortality even when measured at time of ICU admission, their use in allocation of limited ICU resources in a developing country merits further research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.