Multilateration (MLAT) systems and wide area MLAT (WAM) systems are particular cases of multisite (multistatic) radar systems (MSRSs): passive MSRSs (PMSRSs) with known expected signal waveforms. One of the most stringent requirements on an MLAT system is a very high accuracy of target (emitter) localization. In view of this, the potential accuracy of emitter localization (PAEL) based on Cramer–Rao inequality is important. Its dependence on system geometry and time of arrival (TOA) measurement accuracy allows choosing reasonable system geometry and requirements on TOA measurements. PAEL for MLAT and WAM systems with different geometry is considered, including systems proposed for the Marco Polo airport in Venice, Italy. The possibility of velocity determination using PAEL for landing and taking off aircrafts is also discussed. The concept of PAEL permits one to analyze joint measurements of different signal parameters and target coordinates. The effect of additional elevation angle measurements on PAEL in the WAM system for the Marco Polo airport is shown.