Ion-exchange modeling is one of the most widely used methods to predict ion adsorption data on clay minerals. The model parameters (e.g. number of adsorption sites and the cation adsorption capacity of each site) are optimized normally by curve fitting experimental data, which does not definitively identify the local environment of the adsorption sites. A new approach for constructing an ion-exchange model was pursued, whereby some of the parameters needed were obtained independently, resulting in fewer parameters being based on data-curve fitting. Specifically, a reversed modeling approach was taken in which the number of types of sites used by the model was based on a previous first-principles Density Functional Theory study, and the relative distribution of these sites was based on the clay’s chemical composition. To simplify the ion-exchange reactions involved, montmorillonite was Na-saturated to produce a well-controlled Na-montmorillonite (NaMnt) adsorbent. Ion adsorption data on NaMnt were collected from batch experiments over a wide range of pH, Cs+ concentrations, and in the presence of coexisting cations. Ion-exchange models were developed and optimized to predict these cation adsorption data on NaMnt. The maximum amount of adsorption of monovalent cations on NaMnt was obtained from the plateau of the adsorption envelope data at high pH. The remaining equilibrium constants (pK) were optimized by curve fitting the edges of the adsorption envelope data. The resultant three-site ion-exchange model was able to predict the retention of Li+, Na+, K+, and Cs+ very well as a function of pH. The model was then tested on adsorption envelopes of various combinations of these cations, and on Cs+ adsorption isotherms at three different pH values. The pK values were constant for all assays. The interlayer spacing of NaMnt was also analyzed to investigate its relation with cation adsorption strength. An X-ray diffraction study of the samples showed that the measured d001 values for these cations were consistent with their adsorption pK values. The Cs+ cation showed a strong ability to collapse the interlayer region of montmorillonite. In the presence of multiple competing cations, the broadening and presence of multiple d001 XRD peaks suggested that the cations in the interlayers may be segregated.