We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although numerous neuroimaging studies have depicted neural alterations in individuals with obsessive–compulsive disorder (OCD), a psychiatric disorder characterized by intrusive cognitions and repetitive behaviors, the molecular mechanisms connecting brain structural changes and gene expression remain poorly understood.
Methods
This study combined the Allen Human Brain Atlas dataset with neuroimaging data from the Meta-Analysis (ENIGMA) consortium and independent cohorts. Later, partial least squares regression and enrichment analysis were performed to probe the correlation between transcription and cortical thickness variation among adults with OCD.
Results
The cortical map of case-control differences in cortical thickness was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms preferentially expressed across different cell types and cortical layers. These genes were specifically expressed in brain tissue, spanning all cortical developmental stages. Protein–protein interaction analysis revealed that these genes coded a network of proteins encompassing various highly interactive hubs.
Conclusions
The study findings bridge the gap between neural structure and transcriptome data in OCD, fostering an integrative understanding of the potential biological mechanisms.
Epigenetic modifications, such as DNA methylation, contribute to the pathophysiology of major depressive disorder (MDD). This study aimed to identify novel MDD-associated epigenetic loci using DNA methylation profiles and explore the correlations between epigenetic loci and cortical thickness changes in patients with MDD.
Methods
A total of 350 patients with MDD and 161 healthy controls (HCs) were included in the epigenome-wide association studies (EWAS). We analyzed methylation, copy number alteration (CNA), and gene network profiles in the MDD group. A total of 234 patients with MDD and 135 HCs were included in neuroimaging methylation analysis. Pearson's partial correlation analysis was used to estimate the correlation between cortical thickness of brain regions and DNA methylation levels of the loci.
Results
In total, 2018 differentially methylated probes (DMPs) and 351 differentially methylated regions (DMRs) were identified. DMP-related genes were enriched in two networks involved in the central nervous system. In neuroimaging analysis, patients with MDD showed cortical thinning in the prefrontal regions and cortical thickening in several occipital regions. Cortical thickness of the left ventrolateral prefrontal cortex (VLPFC, i.e. pars triangularis) was negatively correlated with eight DMPs associated with six genes (EML6, ZFP64, CLSTN3, KCNMA1, TAOK2, and NT5E).
Conclusion
Through combining DNA methylation and neuroimaging analyses, negative correlations were identified between the cortical thickness of the left VLPFC and DNA methylation levels of eight DMPs. Our findings could improve our understanding of the pathophysiology of MDD.
Divergent thinking is a critical creative cognitive process. Its neural mechanisms have been well-studied through structural and functional imaging in healthy individuals but are less explored in patients with bipolar disorder (BD). Because of the traditional link between creativity and BD, this study investigated the structural correlates of divergent thinking in patients with BD through surface-based morphometry.
Methods:
Fifty-nine patients diagnosed with BD I or BD II (35.3 ± 8.5 years) and 56 age- and sex-matched controls (33.9 ± 7.4 years) were recruited. The participants underwent structural magnetic resonance imaging and an evaluation of divergent thinking by using the Chinese version of the Abbreviated Torrance Test for Adults (ATTA). FreeSurfer 7.0 was used to generate thickness and surface area maps for each participant. Brainwise regression of the association between cortical thickness or surface area and ATTA performance was conducted using general linear models.
Results:
Divergent thinking performance did not differ significantly between the patients with BD and the healthy controls. In these patients, total ATTA score was negatively correlated with cortical thickness in the right middle frontal gyrus, right occipital, and left precuneus but positively correlated with the surface area of the right superior frontal gyrus. By contrast, total ATTA scores and cortical thickness or surface area were not significantly correlated among the controls.
Conclusion:
The findings indicate that divergent thinking involves cerebral structures for executive control, mental imagery, and visual processing in patients with BD, and the right prefrontal cortex might be the most crucial of these structures.
Electroconvulsive therapy (ECT) is one of the most studied and validated available treatments for severe or treatment-resistant depression. However, little is known about the neural mechanisms underlying ECT. This systematic review aims to critically review all structural magnetic resonance imaging studies investigating longitudinal cortical thickness (CT) changes after ECT in patients with unipolar or bipolar depression.
Methods:
We performed a search on PubMed, Medline, and Embase to identify all available studies published before April 20, 2023. A total of 10 studies were included.
Results:
The investigations showed widespread increases in CT after ECT in depressed patients, involving mainly the temporal, insular, and frontal regions. In five studies, CT increases in a non-overlapping set of brain areas correlated with the clinical efficacy of ECT. The small sample size, heterogeneity in terms of populations, comorbidities, and ECT protocols, and the lack of a control group in some investigations limit the generalisability of the results.
Conclusions:
Our findings support the idea that ECT can increase CT in patients with unipolar and bipolar depression. It remains unclear whether these changes are related to the clinical response. Future larger studies with longer follow-up are warranted to thoroughly address the potential role of CT as a biomarker of clinical response after ECT.
Among food groups with putative benefits for brain structures, dairy products (DP) have been poorly studied. The sample included participants without dementia from the ancillary brain imaging study of the Three-City cohort who were aged 65+ years, had their DP intake assessed with a FFQ at baseline and underwent an anatomical scan 3 years (n 343) or 9 years (n 195) after completing the dietary survey. The frequencies of consumption of total DP, milk and cheese were not associated with brain structure. Compared with the lowest frequency, the highest frequency of fresh DP (F-DP) consumption (< 0·5 v. > 1·5 times/d) was significantly associated with a lower medial temporal lobe volume (MTLV) (β = −1·09 cm3, 95 % CI − 1·83, −0·36) 9 years later. In this population-based study of older adults, the consumption of F-DP more than 1·5 times/d was associated with a lower MTLV, which is considered an early biomarker of Alzheimer’s disease, 9 years later. This original study should be replicated in different settings before conclusions are drawn.
The neuroanatomical alteration in bipolar II depression (BDII-D) and its associations with inflammation, childhood adversity, and psychiatric symptoms are currently unclear. We hypothesize that neuroanatomical deficits will be related to higher inflammation, greater childhood adversity, and worse psychiatric symptoms in BDII-D.
Methods
Voxel- and surface-based morphometry was performed using the CAT toolbox in 150 BDII-D patients and 155 healthy controls (HCs). Partial Pearson correlations followed by multiple comparison correction was used to indicate significant relationships between neuroanatomy and inflammation, childhood adversity, and psychiatric symptoms.
Results
Compared with HCs, the BDII-D group demonstrated significantly smaller gray matter volumes (GMVs) in frontostriatal and fronto-cerebellar area, insula, rectus, and temporal gyrus, while significantly thinner cortices were found in frontal and temporal areas. In BDII-D, smaller GMV in the right middle frontal gyrus (MFG) was correlated with greater sexual abuse (r = −0.348, q < 0.001) while larger GMV in the right orbital MFG was correlated with greater physical neglect (r = 0.254, q = 0.03). Higher WBC count (r = −0.227, q = 0.015) and IL-6 levels (r = −0.266, q = 0.015) was associated with smaller GMVs in fronto-cerebellar area in BDII-D. Greater positive symptoms was correlated with larger GMVs of the left middle temporal pole (r = 0.245, q = 0.03).
Conclusions
Neuroanatomical alterations in frontostriatal and fronto-cerebellar area, insula, rectus, temporal gyrus volumes, and frontal-temporal thickness may reflect a core pathophysiological mechanism of BDII-D, which are related to inflammation, trauma, and psychiatric symptoms in BDII-D.
Anorexia nervosa (AN) is characterized by severe emaciation and drastic reductions of brain mass, but the underlying mechanisms remain unclear. The present study investigated the putative association between the serum-based protein markers of brain damage neurofilament light (NF-L), tau protein, and glial fibrillary acidic protein (GFAP) and cortical thinning in acute AN.
Methods
Blood samples and magnetic resonance imaging scans were obtained from 52 predominantly adolescent, female patients with AN before and after partial weight restoration (increase in body mass index >14%). The effect of marker levels before weight gain and change in marker levels on cortical thickness (CT) was modeled at each vertex of the cortical surface using linear mixed-effect models. To test whether the observed effects were specific to AN, follow-up analyses exploring a potential general association of marker levels with CT were conducted in a female healthy control (HC) sample (n = 147).
Results
In AN, higher baseline levels of NF-L, an established marker of axonal damage, were associated with lower CT in several regions, with the most prominent clusters located in bilateral temporal lobes. Tau protein and GFAP were not associated with CT. In HC, no associations between damage marker levels and CT were detected.
Conclusions
A speculative interpretation would be that cortical thinning in acute AN might be at least partially a result of axonal damage processes. Further studies should thus test the potential of serum NF-L to become a reliable, low-cost and minimally invasive marker of structural brain alterations in AN.
Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.
Methods:
We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.
Results:
BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.
Conclusions:
We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
Understanding the evolution of negative symptoms in first-episode psychosis (FEP) requires long-term longitudinal study designs that capture the progression of this condition and the associated brain changes.
Aims
To explore the factors underlying negative symptoms and their association with long-term abnormal brain trajectories.
Method
We followed up 357 people with FEP over a 10-year period. Factor analyses were conducted to explore negative symptom dimensionality. Latent growth mixture modelling (LGMM) was used to identify the latent classes. Analysis of variance (ANOVA) was conducted to investigate developmental trajectories of cortical thickness. Finally, the resulting ANOVA maps were correlated with a wide set of regional molecular profiles derived from public databases.
Results
Three trajectories (stable, decreasing and increasing) were found in each of the three factors (expressivity, experiential and attention) identified by the factor analyses. Patients with an increasing trajectory in the expressivity factor showed cortical thinning in caudal middle frontal, pars triangularis, rostral middle frontal and superior frontal regions from the third to the tenth year after the onset of the psychotic disorder. The F-statistic map of cortical thickness expressivity differences was associated with a receptor density map derived from positron emission tomography data.
Conclusions
Stable and decreasing were the most common trajectories. Additionally, cortical thickness abnormalities found at relatively late stages of FEP onset could be exploited as a biomarker of poor symptom outcome in the expressivity dimension. Finally, the brain areas with less density of receptors spatially overlap areas that discriminate the trajectories of the expressivity dimension.
Previous studies have confirmed that miR-146a-5p overexpression suppresses neurogenesis, thereby enhancing depression-like behaviors. However, it remains unclear how miR-146a-5p dysregulation produces in vivo brain structural abnormalities in patients with major depressive disorder (MDD).
Methods
In this case–control study, we combined cortical morphology analysis of magnetic resonance imaging (MRI) and miR-146a-5p quantification to investigate the neuropathological effect of miR-146a-5p on cortical thickness in MDD patients. Serum-derived exosomes that were considered to readily cross the blood-brain barrier and contain miR-146a-5p were isolated for miRNA quantification. Moreover, follow-up MRI scans were performed in the MDD patients after 6 weeks of antidepressant treatment to further validate the clinical relevance of the relationship between miR-146a-5p and brain structural abnormalities.
Results
In total, 113 medication-free MDD patients and 107 matched healthy controls were included. Vertex-vise general linear model revealed miR-146a-5p-dependent cortical thinning in MDD patients compared with healthy individuals, i.e., overexpression of miR-146a-5p was associated with reduced cortical thickness in the left orbitofrontal cortex (OFC), anterior cingulate cortex, bilateral lateral occipital cortices (LOCs), etc. Moreover, this relationship between baseline miR-146a-5p and cortical thinning was nonsignificant for all regions in the patients who had received antidepressant treatment, and higher baseline miR-146a-5p expression was found to be related to greater longitudinal cortical thickening in the left OFC and right LOC.
Conclusions
The findings of this study reveal a relationship between miR-146a-5p overexpression and cortical atrophy and thus may help specify the in vivo mediating effect of miR-146a-5p dysregulation on brain structural abnormalities in patients with MDD.
The extant findings have been of great heterogeneity due to partial volume effects in the investigation of cortical gray matter volume (GMV), high comorbidity with other psychiatric disorders, and concomitant therapy in the neuroimaging studies of social anxiety disorder (SAD).
Objectives
To identity gray matter deficits in cortical and subcortical structures in non-comorbid never-treated patients, so as to explore the “pure” SAD-specific pathophysiology and neurobiology.
Methods
Thirty-two non-comorbid free-of-treatment patients with SAD and 32 demography-matched healthy controls were recruited to undergo high-resolution 3.0-Tesla T1-weighted MRI. Cortical thickness (CT) and subcortical GMV were estimated using FreeSurfer; then the whole-brain vertex-wise analysis was performed to compare group differences in CT. Besides, differences in subcortical GMV of priori selected regions-of-interest: amygdala, hippocampus, putamen, and pallidum were compared by an analysis of covariance with age, gender, and total subcortical GMV as covariates.
Results
The SAD patients demonstrated significantly decreased CT near-symmetrically in the bilateral prefrontal cortex (Monte Carlo simulations of P < 0.05). Besides, smaller GMV in the left hippocampus and pallidum were also observed in the SAD cohort (two-sample t-test of P < 0.05).
Conclusions
For the first time, the current study investigated the structural alterations of CT and subcortical GMV in non-comorbid never-treated patients with SAD. Our findings provide preliminary evidences that structural deficits in cortical-striatal-limbic circuit may contribute to the psychopathological basis of SAD, and offer more detailed structural substrates for the involvement of such aberrant circuit in the imbalance between defective bottom-up response and top-down control to external stimuli in SAD.
Negative symptoms are one of the most incapacitating features of Schizophrenia but their pathophysiology remains unclear. They have been linked to alterations in grey matter in several brain regions, but findings have been inconsistent. This may reflect the investigation of relatively small patient samples, and the confounding effects of chronic illness and exposure to antipsychotic medication. We sought to address these issues by investigating concurrently grey matter volumes (GMV) and cortical thickness (CTh) in a large sample of antipsychotic-naïve or minimally treated patients with First-Episode Schizophrenia (FES).
Methods
T1-weighted structural MRI brain scans were acquired from 180 antipsychotic-naïve or minimally treated patients recruited as part of the OPTiMiSE study. The sample was stratified into subgroups with (N = 88) or without (N = 92) Prominent Negative Symptoms (PMN), based on PANSS ratings at presentation. Regional GMV and CTh in the two groups were compared using Voxel-Based Morphometry (VBM) and FreeSurfer (FS). Between-group differences were corrected for multiple comparisons via Family-Wise Error (FWE) and Monte Carlo z-field simulation respectively at p < 0.05 (2-tailed).
Results
The presence of PMN symptoms was associated with larger left inferior orbitofrontal volume (p = 0.03) and greater CTh in the left lateral orbitofrontal gyrus (p = 0.007), but reduced CTh in the left superior temporal gyrus (p = 0.009).
Conclusions
The findings highlight the role of orbitofrontal and temporal cortices in the pathogenesis of negative symptoms of Schizophrenia. As they were evident in generally untreated FEP patients, the results are unlikely to be related to effects of previous treatment or illness chronicity.
A variety of childhood experiences can lead to anxious/depressed (A/D) symptoms. The aim of the present study was to explore the brain morphological (cortical thickness and surface area) correlates of A/D symptoms and the extent to which these phenotypes vary depending on the quality of the parenting context in which children develop. Structural magnetic resonance imaging (MRI) scans were acquired on 45 children with Child Protective Services (CPS) involvement due to risk of not receiving adequate care (high-risk group) and 25 children without CPS involvement (low-risk group) (rangeage = 8.08–12.14; Mage = 10.05) to assess cortical thickness (CT) and cortical surface area (SA). A/D symptoms were measured using the Child Behavioral Checklist. The association between A/D symptoms and CT, but not SA, differed by risk status such that high-risk children showed decreasing CT as A/D scores increased, whereas low-risk children showed increasing CT as A/D scores increased. This interaction was specific to CT in prefrontal, frontal, temporal, and parietal cortical regions. The groups had marginally different A/D scores, in the direction of higher risk being associated with lower A/D scores. Results suggest that CT correlates of A/D symptoms are differentially shaped by the quality of early caregiving experiences and should be distinguished between high- and low-risk children.
Progressive brain structural MRI changes are described in schizophrenia and have been ascribed to both illness progression and antipsychotic treatment. We investigated treatment effects, in terms of total cumulative antipsychotic dose, efficacy and tolerability, on brain structural changes over the first 24 months of treatment in schizophrenia.
Methods
A prospective, 24-month, single-site cohort study in 99 minimally treated patients with first-episode schizophrenia, schizophreniform and schizoaffective disorder, and 98 matched healthy controls. We treated the patients according to a fixed protocol with flupenthixol decanoate, a long-acting injectable antipsychotic. We assessed psychopathology, cognition, extrapyramidal symptoms and BMI, and acquired MRI scans at months 0, 12 and 24. We selected global cortical thickness, white matter volume and basal ganglia volume as the regions of interest.
Results
The only significant group × time interaction was for basal ganglia volumes. However, patients, but not controls, displayed cortical thickness reductions and increases in white matter and basal ganglia volumes. Cortical thickness reductions were unrelated to treatment. White matter volume increases were associated with lower cumulative antipsychotic dose, greater improvements in psychopathology and cognition, and more extrapyramidal symptoms. Basal ganglia volume increases were associated with greater improvements in psychopathology, greater increases in BMI and more extrapyramidal symptoms.
Conclusions
We provide evidence for plasticity in white matter and basal ganglia associated with antipsychotic treatment in schizophrenia, most likely linked to the dopamine blocking actions of these agents. Cortical changes may be more closely related to the neurodevelopmental, non-dopaminergic aspects of the illness.
In early (EB) and late blind (LB) children, vision deprivation produces cross-modal plasticity in the visual cortex. The progression of structural- and tract-based spatial statistics changes in the visual cortex in EB and LB, as well as their impact on global cognition, have yet to be investigated. The purpose of this study was to determine the cortical thickness (CT), gyrification index (GI), and white matter (WM) integrity in EB and LB children, as well as their association to the duration of blindness and education. Structural and diffusion tensor imaging data were acquired in a 3T magnetic resonance imaging in EB and LB children (n = 40 each) and 30 sighted controls (SCs) and processed using CAT12 toolbox and FSL software. Two sample t-test was used for group analyses with P < 0.05 (false discovery rate-corrected). Increased CT in visual, sensory-motor, and auditory areas, and GI in bilateral visual cortex was observed in EB children. In LB children, the right visual cortex, anterior-cingulate, sensorimotor, and auditory areas showed increased GI. Structural- and tract-based spatial statistics changes were observed in anterior visual pathway, thalamo-cortical, and corticospinal tracts, and were correlated with education onset and global cognition in EB children. Reduced impairment in WM, increased CT and GI and its correlation with global cognitive functions in visually impaired children suggests cross-modal plasticity due to adaptive compensatory mechanism (as compared to SCs). Reduced CT and increased FA in thalamo-cortical areas in EB suggest synaptic pruning and alteration in WM integrity. In the visual cortical pathway, higher education and the development of blindness modify the morphology of brain areas and influence the probabilistic tractography in EB rather than LB.
Studies examining gamma-aminobutyric acid (GABA) or glutamate in ultra-high risk for psychosis (UHR) have shown conflicting results, and a number of multimodal studies examining associations between metabolite and structural characteristics is very limited.
Objectives
We aimed to investigate potential associations between GABA and glutamate levels and cortical thickness in the frontal lobe in UHR individuals and healthy controls (HC).
Methods
20 male UHR individuals and 19 healthy controls (HC) underwent structural MRI and MR spectroscopy at 3T Philips scanner. T1-weighted images were processed via FreeSurfer 6.0 to quantify cortical thickness for selected frontal regions labeled according to Desikan atlas. MEGA-PRESS acquisitions were analyzed with jMRUi (ver. 5.1 Alpha), levels of GABA and glutamate were calculated as ratios to creatine + phosphocreatine.
Results
The study revealed: 1) GABA/Cr ratios reduction in the left frontal lobe (p=0.001) which was not attributable to antipsychotic medication; 2) cortical thickness reductions in the left pars orbitalis (p=0.005) (the anterior part of the inferior frontal gyrus) in the UHR individuals compared to HC. No significant correlations between GABA/Cr ratios and cortical thickness were identified in both groups.
Conclusions
The findings indicate that the UHR state is associated with altered GABA levels and cortical thickness reductions in the prefrontal cortex. The results also show that GABA levels are not directly related to cortical abnormalities, suggesting that altered metabolite levels may be associated with a complex system of structural and functional impairments, rather than directly correlating with structural changes in separate cortical regions. The work was supported by RFBR grant 19-29-10040.
Literature shows overlapping alterations in brain structure in Attention-deficit/Hyperactivity Disorder (ADHD) and substance use disorder (SUD), suggesting shared pathophysiological mechanisms. It is unclear to what extent family history (trait) effects and/or substance misuse (state) effects explain the observed overlap.
Objectives
Our aim was to examine the effects of (i) SUD family history (FH) and (ii) substance misuse on brain structure in ADHD.
Methods
We compared structural MRI data (cortical thickness; subcortical volumes) between (i) ADHD subjects and controls with or without FH (ADHD-FH+: n=139; ADHD-FH-: n=86; controls-FH+: n=60; controls-FH-: n=74), and (ii) FH-matched ADHD groups with and without substance misuse and controls (ADHD+SM, ADHD-only and controls, n=68 per group). Furthermore, we explored whether FH effects were more pronounced in subjects with SUD in both parents (n=63) compared to subjects with one SUD parent (n=105) and without FH (n=160).
Results
There was no main FH effect on brain structure. ADHD+SM showed decreased CT in inferior frontal gyrus (IFG) compared to controls, while no difference was found between ADHD-only and ADHD+SM or controls. Subjects with SUD in both parents showed decreased thickness of IFG and volume of nucleus accumbens (NAcc), compared to those with one SUD parent.
Conclusions
Substance misuse in ADHD might result in smaller IFG, which is in line with findings in SUD-literature. A contribution of premorbid alterations, due to FH, could not be ruled out, particularly for IFG thickness. Future studies should further investigate the potential role of these regions in treatment and prevention strategies.
People who tend to impulsively choose smaller, sooner rewards over larger, later rewards are at increased risk for addiction and psychiatric disorders. A neurobiological measure of the tendency to overvalue immediate gratification could facilitate the study of individuals who are susceptible to these mental disorders. The objective of this research was to develop a cortical assay of impulsive choice for immediate rewards.
Methods
A cortex-based assay of impulsive choice was developed using 1105 healthy adults from the Human Connectome Project, and then cross-validated in two independent samples of adults with elevated rates of psychiatric disorders.
Results
Study 1: Cortical delay discounting (C-DD) was developed using a multivariate additive model of gray matter thickness across both hemispheres. Higher C-DD corresponded to thinner cortex and greater impulsive choice for immediate rewards. It also predicted cannabis use beyond established risk factors for drug use, including familial substance use, childhood conduct problems, personality traits, and cognitive functioning. Study 2: C-DD replicated the association with delay discounting performance from study 1. Structural equation modeling showed C-DD covaried with symptoms of externalizing, but not internalizing disorders. Study 3: C-DD positively predicted future delay discounting behavior (6–34 months later).
Conclusions
Across three studies, a cortical assay of impulsive choice evidenced consistent associations with drug use and delay discounting task performance. It was also uniquely associated with psychiatric disorders that share impulsivity as a core feature. Together, findings support the utility of C-DD as a neurobiological assay of impulsive decision-making and a possible biomarker of externalizing disorders.
Testosterone (T) and cortisol (C) are steroid hormones that have been argued to play opposing roles in shaping physical and behavioral development in humans. While there is evidence linking T and C to different memory processes during adulthood, it remains unclear how the relative levels of T and C (TC ratio) may influence brain and behavioral development, whether they are influenced by sex of the child, and whether or not they occur as a result of stable changes in brain structure (organizational changes), as opposed to transient changes in brain function (activational changes). As such, we tested for associations among TC ratio, cortico-hippocampal structure, and standardized tests of executive, verbal, and visuo-spatial function in a longitudinal sample of typically developing 4–22-year-old children and adolescents. We found greater TC ratios to be associated with greater coordinated growth (i.e. covariance) between the hippocampus and cortical thickness in several areas primarily devoted to visual function. In addition, there was an age-related association between TC ratio and parieto-hippocampal covariance, as well as a sex-specific association between TC ratio and prefrontal-hippocampal covariance. Differences in brain structure related to TC ratio were in turn associated with lower verbal/executive function, as well as greater attention in tests of visuo-spatial abilities. These results support the notion that TC ratio may shift the balance between top-down (cortex to hippocampus) and bottom-up (hippocampus to cortex) processes, impairing more complex, cortical-based tasks and optimizing visuospatial tasks relying primarily on the hippocampus.