We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we develop spectral techniques. We highlight some applications to Markov chain mixing and network analysis. The main tools are the spectral theorem and the variational characterization of eigenvalues, which we review together with some related results. We also give a brief introduction to spectral graph theory and detail an application to community recovery. Then we apply the spectral theorem to reversible Markov chains. In particular we define the spectral gap and establish its close relationship to the mixing time. We also show in that the spectral gap can be bounded using certain isoperimetric properties of the underlying network. We prove Cheeger’s inequality, which quantifies this relationship, and introduce expander graphs, an important family of graphs with good “expansion.” Applications to mixing times are also discussed. One specific technique is the “canonical paths method,” which bounds the spectral graph by formalizing a notion of congestion in the network.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.