A novel method of determining the crack tip location from a thermoelastic quadrature signal is presented. The method is utilised for crack tip locations within complex stress fields, namely within fastened aircraft lap joints. Coupled structural-thermal finite element modelling was undertaken to investigate the thermal response field around the crack tip location and develop the algorithmic principles. Experimental validation of the crack tip location was conducted using established crack mouth compliance techniques and optical measurements. The crack tip finding algorithm used the location of the maximum spatial gradient of the thermal field in the direction of crack growth. The method showed good accuracy when compared to traditional methods. Resultant crack growth rates were further verified using quantitative fractography.