Let $H$ be a separable, infinite-dimensional, complex Hilbert space and let $A,\,B\,\in \,\mathcal{L}\left( H \right)$, where $\mathcal{L}(H)$ is the algebra of all bounded linear operators on $H$. Let ${{\delta }_{AB}}\,:\mathcal{L}\left( H \right)\to \mathcal{L}\left( H \right)$ denote the generalized derivation ${{\delta }_{AB}}\left( X \right)\,=\,AX\,-\,XB$. This note will initiate a study on the class of pairs $\left( A,\,B \right)$ such that $\overline{R\left( {{\delta }_{AB}} \right)}\,=\,\overline{R\left( {{\delta }_{A*\,B*}} \right)}$.