This paper surveys research on mathematical models that predict the performance of digital devices that operate with intermittent energy sources. The approach taken in this work is based on the “Energy Packet Network” paradigm where the arrival of data to be processed or transmitted, and the energy to operate the system, are modeled as discrete random processes. Our assumption is that these devices will capture energy from intermittent ambient sources such as vibrations, heat or light, and capture it onto electrical energy that may be stored in batteries or capacitors. The devices consume this energy intermittently for processing and for wired or wireless transmission. Thus, both the arrival of energy to the device, and the devices workload, are modeled as random processes. Based on these assumptions, we discuss probability models based on Markov chains that can be used to predict the effective rates at which such devices operate. We also survey related work that models networks of such systems.