We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To improve estimates of vitamin A deficiency in children of pre-school age in the 2006 Uganda Demographic and Health Survey (UDHS 2006).
Design
A cross-sectional study in which dried blood spot samples were analysed for C-reactive protein (CRP). Retinol-binding protein (RBP) had previously been analysed using a commercial enzyme immunoassay.
Setting
A population-based study in Uganda.
Subjects
A systematically selected subset of the dried blood spot samples collected from children aged 6–59 months for UDHS 2006. Children were categorized into ‘normal CRP’ (Group A) and ‘raised CRP’ (Group B) using a CRP cut-off of 5 mg/l. A correction factor was calculated to adjust the Group B RBP values for the influence of the acute-phase response.
Results
Geometric mean CRP was 6·2 (95 % CI 5·5, 7·0) mg/l, 1·6 (95 % CI 1·5, 1·8) mg/l and 17·9 (95 % CI 16·4, 19·6) mg/l in all children, in Group A and in Group B, respectively. Geometric mean RBP in all children, in Group A and in Group B was 1·18 (95 % CI 1·14, 1·22) μmol/l, 1·26 (95 % CI 1·20, 1·33) μmol/l and 1·12 (95 % CI 1·07, 1·17) μmol/l, respectively, before correction. Correction increased mean RBP in Group B to 1·26 (95 % CI 1·21, 1·31) μmol/l. The prevalence of vitamin A deficiency (RBP < 0·825 μmol/l) reduced from 18·4 % (95 % CI 17·2, 23·0 %) to 13·9 % (95 % CI 11·3, 16·5 %).
Conclusions
Correcting for the acute-phase response significantly reduced the prevalence of vitamin A deficiency; thus, the acute-phase response should be considered when vitamin A status is assessed using RBP in order to improve population-level estimates of vitamin A deficiency.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.