We propose a Lagrangian approach to deriving energy-preserving finite difference schemes for the Euler–Lagrange partial differential equations. Noether’s theorem states that the symmetry of time translation of Lagrangians yields the energy conservation law. We introduce a unique viewpoint on this theorem: “the symmetry of time translation of Lagrangians derives the Euler–Lagrange equation and the energy conservation law, simultaneously.” The proposed method is a combination of a discrete counter part of this statement and the discrete gradient method. It is also shown that the symmetry of space translation derives momentum-preserving schemes. Finally, we discuss the existence of discrete local conservation laws.