We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $K_n=\mathbb{Q}(\alpha_n)$ be a family of algebraic number fields where $\alpha_n\in \mathbb{C}$ is a root of the nth exponential Taylor polynomial $\frac{x^n}{n!}+ \frac{x^{n-1}}{(n-1)!}+ \cdots +\frac{x^2}{2!}+\frac{x}{1!}+1$, $n\in \mathbb{N}$. In this paper, we give a formula for the exact power of any prime p dividing the discriminant of Kn in terms of the p-adic expansion of n. An explicit p-integral basis of Kn is also given for each prime p. These p-integral bases quickly lead to the construction of an integral basis of Kn.
The problem of classifying elliptic curves over $\mathbb Q$ with a given discriminant has received much attention. The analogous problem for genus $2$ curves has only been tackled when the absolute discriminant is a power of $2$. In this article, we classify genus $2$ curves C defined over ${\mathbb Q}$ with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve C must be isomorphic to a specialization of one of finitely many $1$-parameter families of genus $2$ curves. In particular, we provide genus $2$ analogues to Neumann–Setzer families of elliptic curves over the rationals.
Let $K={\mathbb {Q}}(\theta )$ be an algebraic number field with $\theta $ satisfying a monic irreducible polynomial $f(x)$ of degree n over ${\mathbb {Q}}.$ The polynomial $f(x)$ is said to be monogenic if $\{1,\theta ,\ldots ,\theta ^{n-1}\}$ is an integral basis of K. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief note on some infinite families of monogenic polynomials’, Bull. Aust. Math. Soc.100 (2019), 239–244] conjectured that if $n\ge 3$, $1\le m\le n-1$, $\gcd (n,mB)=1$ and A is a prime number, then the polynomial $x^n+A (Bx+1)^m\in {\mathbb {Z}}[x]$ is monogenic if and only if $n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$ is square-free. We prove that this conjecture is true.
Valid estimates of premorbid cognitive functioning (PMIQ) are crucial for the assessment of older adults at risk for Alzheimer’s disease. We investigated the relationship between the NIH Toolbox-Cognition Battery’s (NIHTB-CB) Oral Reading Recognition (ORR) subtest and Wechsler Test of Adult Reading scores (WTAR, convergent validity). We also compared ORR to NIHTB-CB Flanker scores, where null relationships were expected (discriminant validity).
Methods:
The WTAR and NIHTB-CB were administered to 130 cognitively normal (CN) and 113 participants with mild cognitive impairment (MCI). Participants were community-dwelling, older Black and White adults, ages 55–88 years. Data analysis used uncorrected standard scores and Bayesian bivariate correlations. Supplemental materials include intraclass correlations.
Results:
ORR and WTAR scores were strongly positively associated, while ORR and Flanker scores were unrelated. This pattern held when restricting analyses to the two cognitive status groups, the two racial groups, and the four race-by-diagnosis subgroups.
Conclusion:
The findings demonstrate convergent and discriminant validity and support NIHTB-CB ORR scores as valid estimates of scores on a PMIQ measure in older Black and White adults with and without MCI.
We study the discriminants of the minimal polynomials $\mathcal {P}_n$ of the Ramanujan $t_n$ class invariants, which are defined for positive $n\equiv 11\pmod {24}$. We show that $\Delta (\mathcal {P}_n)$ divides $\Delta (H_n)$, where $H_n$ is the ring class polynomial, with quotient a perfect square and determine the sign of $\Delta (\mathcal {P}_n)$ based on the ideal class group structure of the order of discriminant $-n$. We also show that the discriminant of the number field generated by $j({(-1+\sqrt {-n})}/{2})$, where j is the j-invariant, divides $\Delta (\mathcal {P}_n)$. Moreover, using Ye’s computation of $\log|\Delta(H_n)|$ [‘Revisiting the Gross–Zagier discriminant formula’, Math. Nachr. 293 (2020), 1801–1826], we show that 3 never divides $\Delta(H_n)$, and thus $\Delta(\mathcal{P}_n)$, for all squarefree $n\equiv11\pmod{24}$.
In algebraic number theory the determinant plays a bigger role than in a typical undergraduate linear algebra course. In particular, its relationship to trace, norm, and characteristic polynomial is important. For this reason, we develop determinant theory from scratch in this chapter, using an axiomatic characterization of determinant due to Artin. Among other things, this quickly gives basis-independence of the characteristic polynomial, trace, and norm. With these foundations we can introduce the discriminant, which tests whether an n-tuple of vectors form a basis, and paves the way for integral bases studied in the next chapter.
Solving quadratic Diophantine equations amounts to finding the values taken by quadratic forms, a problem that can be fruitfully approached by finding the equivalents of a given form under change of variables. This approach was initiated by Lagrange and developed to a high level by Gauss. However, the way Gauss did it involved an apparently difficult operation called composition of forms, clarified only later by the concept of Abelian group.
In Chapter 2, we explain some of the basics of algebraic number theory, which we will need in Chapter 3 to introduce the theory of heights and to give a proof of the Mordell-Weil theorem. We begin by introducing the trace and the norm of an element of a finite extention field. We show the existence of an integral basis for a ring of integers and define the discriminant of a number field. After showing the existence of a prime factorization of a fractional ideal of a ring of integers (Theorems 2.5 and 2.6), we prove Minkowski's convex body theorem (Theorem 2.9) and Minkowski's discriminant theorem (Theorem 2.13). Finally, we introduce the notions of the ramification index and the residue degree at a prime ideal of an extension field. We define the difference of a number field, and explain several results relating the discriminant, the difference, and the ramifications of prime ideals (Lemma 2.17 and Theorem 2.18).
We obtain an effective analytic formula, with explicit constants, for the number of distinct irreducible factors of a polynomial
$f \in \mathbb {Z}[x]$
. We use an explicit version of Mertens’ theorem for number fields to estimate a related sum over rational primes. For a given
$f \in \mathbb {Z}[x]$
, our result yields a finite list of primes that certifies the number of distinct irreducible factors of f.
In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/C(E)$ of the discriminant divided by the conductor is squarefree; and second, the set of elliptic curves $E$ such that the Szpiro quotient$\beta _E:=\log |\Delta (E)|/\log (C(E))$ is less than $7/4$. Both these families are conjectured to contain a positive proportion of elliptic curves, when ordered by conductor. Our main results determine asymptotics for both these families, when ordered by conductor. Moreover, we prove that the average size of the $2$-Selmer groups of elliptic curves in the first family, again when these curves are ordered by their conductors, is $3$. The key new ingredients necessary for the proofs are ‘uniformity estimates’, namely upper bounds on the number of elliptic curves with bounded height, whose discriminants are divisible by high powers of primes.
In [5], Chen and Yui conjectured that Gross–Zagier type formulas may also exist for Thompson series. In this work, we verify Chen and Yui’s conjecture for the cases for Thompson series
$j_{p}(\tau )$
for
$\Gamma _{0}(p)$
for p prime, and equivalently establish formulas for the prime decomposition of the resultants of two ring class polynomials associated to
$j_{p}(\tau )$
and imaginary quadratic fields and the prime decomposition of the discriminant of a ring class polynomial associated to
$j_{p}(\tau )$
and an imaginary quadratic field. Our method for tackling Chen and Yui’s conjecture on resultants can be used to give a different proof to a recent result of Yang and Yin. In addition, as an implication, we verify a conjecture recently raised by Yang, Yin, and Yu.
For $\unicode[STIX]{x1D6FC}$ an algebraic integer of any degree $n\geqslant 2$, it is known that the discriminants of the orders $\mathbb{Z}[\unicode[STIX]{x1D6FC}^{k}]$ go to infinity as $k$ goes to infinity. We give a short proof of this result.
Suppose that $f(x)=x^{n}+A(Bx+C)^{m}\in \mathbb{Z}[x]$, with $n\geq 3$ and $1\leq m<n$, is irreducible over $\mathbb{Q}$. By explicitly calculating the discriminant of $f(x)$, we prove that, when $\gcd (n,mB)=C=1$, there exist infinitely many values of $A$ such that the set $\{1,\unicode[STIX]{x1D703},\unicode[STIX]{x1D703}^{2},\ldots ,\unicode[STIX]{x1D703}^{n-1}\}$ is an integral basis for the ring of integers of $\mathbb{Q}(\unicode[STIX]{x1D703})$, where $f(\unicode[STIX]{x1D703})=0$.
We prove that the monodromy group of a reduced irreducible square system of general polynomial equations equals the symmetric group. This is a natural first step towards the Galois theory of general systems of polynomial equations, because arbitrary systems split into reduced irreducible ones upon monomial changes of variables. In particular, our result proves the multivariate version of the Abel–Ruffini theorem: the classification of general systems of equations solvable by radicals reduces to the classification of lattice polytopes of mixed volume 4 (which we prove to be finite in every dimension). We also notice that the monodromy of every general system of equations is either symmetric or imprimitive. The proof is based on a new result of independent importance regarding dual defectiveness of systems of equations: the discriminant of a reduced irreducible square system of general polynomial equations is a hypersurface unless the system is linear up to a monomial change of variables.
Schmidt [‘Integer points on curves of genus 1’, Compos. Math.81 (1992), 33–59] conjectured that the number of integer points on the elliptic curve defined by the equation $y^{2}=x^{3}+ax^{2}+bx+c$, with $a,b,c\in \mathbb{Z}$, is $O_{\unicode[STIX]{x1D716}}(\max \{1,|a|,|b|,|c|\}^{\unicode[STIX]{x1D716}})$ for any $\unicode[STIX]{x1D716}>0$. On the other hand, Duke [‘Bounds for arithmetic multiplicities’, Proc. Int. Congress Mathematicians, Vol. II (1998), 163–172] conjectured that the number of algebraic number fields of given degree and discriminant $D$ is $O_{\unicode[STIX]{x1D716}}(|D|^{\unicode[STIX]{x1D716}})$. In this note, we prove that Duke’s conjecture for quartic number fields implies Schmidt’s conjecture. We also give a short unconditional proof of Schmidt’s conjecture for the elliptic curve $y^{2}=x^{3}+ax$.
We give an explicit treatment of cubic function fields of characteristic at least five. This includes an efficient technique for converting such a field into standard form, formulae for the field discriminant and the genus, simple necessary and sufficient criteria for non-singularity of the defining curve, and a characterization of all triangular integral bases. Our main result is a description of the signature of any rational place in a cubic extension that involves only the defining curve and the order of the base field. All these quantities only require simple polynomial arithmetic as well as a few square-free polynomial factorizations and, in some cases, square and cube root extraction modulo an irreducible polynomial. We also illustrate why and how signature computation plays an important role in computing the class number of the function field. This in turn has applications to the study of zeros of zeta functions of function fields.
Let $q$ be an algebraic integer of degree $d\ge 2$. Consider the rank of the multiplicative subgroup of ${{\mathbb{C}}^{*}}$ generated by the conjugates of $q$. We say $q$ is of full rank if either the rank is $d-1$ and $q$ has norm $\pm 1$, or the rank is $d$. In this paper we study some properties of $\mathbb{Z}[q]$ where $q$ is an algebraic integer of full rank. The special cases of when $q$ is a Pisot number and when $q$ is a Pisot-cyclotomic number are also studied. There are four main results.
(1) If $q$ is an algebraic integer of full rank and $n$ is a fixed positive integer, then there are only finitely many $m$ such that $\text{disc}\left( \mathbb{Z}\left[ {{q}^{m}} \right] \right)=\text{disc}\left( \mathbb{Z}\left[ {{q}^{n}} \right] \right)$.
(2) If $q$ and $r$ are algebraic integers of degree $d$ of full rank and $\mathbb{Z}[{{q}^{n}}]=\mathbb{Z}[{{r}^{n}}]$ for infinitely many $n$, then either $q=\omega {r}'$ or $q=\text{Norm}{{(r)}^{2/d}}\omega /r'$ , where $r'$ is some conjugate of $r$ and $\omega $ is some root of unity.
(3) Let $r$ be an algebraic integer of degree at most 3. Then there are at most 40 Pisot numbers $q$ such that $\mathbb{Z}[q]=\mathbb{Z}[r]$.
(4) There are only finitely many Pisot-cyclotomic numbers of any fixed order.
An analytically irreducible hypersurface germ $(S,0)\subset(\bm{C}^{d+1},0)$ is quasi-ordinary if it can be defined by the vanishing of the minimal polynomial $f\in\bm{C}\{X\}[Y]$ of a fractional power series in the variables $X=(X_1,\dots,X_d)$ which has characteristic monomials, generalizing the classical Newton–Puiseux characteristic exponents of the plane-branch case ($d=1$). We prove that the set of vertices of Newton polyhedra of resultants of $f$ and $h$ with respect to the indeterminate $Y$, for those polynomials $h$ which are not divisible by $f$, is a semigroup of rank $d$, generalizing the classical semigroup appearing in the plane-branch case. We show that some of the approximate roots of the polynomial $f$ are irreducible quasi-ordinary polynomials and that, together with the coordinates $X_1,\dots,X_d$, provide a set of generators of the semigroup from which we can recover the characteristic monomials and vice versa. Finally, we prove that the semigroups corresponding to any two parametrizations of $(S,0)$ are isomorphic and that this semigroup is a complete invariant of the embedded topological type of the germ $(S,0)$ as characterized by the work of Gau and Lipman.
A first aim of this paper is to answer, in the case of real ruled surfaces $X_l$ of base $\mathbb{C}P^1$, with $l \geq 2$, a question of V. A. Rokhlin: is it true that the equivariant isotopy class does not suffice to distinguish the connected components of the space of smooth real algebraic curves of $X_l$? A second aim is to prove that there exist in these surfaces some real schemes realized by real flexible curves but not by smooth real algebraic curves. These two results of real algebraic geometry are deduced from the following comparison theorem: when $m = l + 2k$, with $k > 0$, the discriminants of the surface $X_m$ are deduced from those of the surface $X_l$ via weighted homotheties. All these results are obtained from a study of a deformation of ruled surfaces.