The interaction between planetary formation and protostellar disks is among the most critical remaining pieces in the puzzle of solar system assembly. Leading theoretical models are constructed around two distinct scenarios: gravitational instabilities and core accretion. The physics of each applies to quite different epochs of formation, and exhibits complex dependencies on parameters like disk density and viscosity. Untangling the effects such processes have on the final planetary statistics necessitates direct observation of exoplanets in their primordial state, prior to orbital migration. Furthermore, detailed study of the environment, such as the way the planets shape the protostellar disk by driving accretion streams across disk gaps, will also constrain formation models. Aperture masking interferometry has demonstrated a unique ability to probe the gaps within stellar disks. It has twin advantages of a higher dynamic range at the diffraction limit (λ/D) than differential imaging, while at the same time giving very extensive UV coverage compared to long baseline interferometry.