Interrow weed control is used in a wide range of crops, traditionally applied via physical cultivation or banded herbicide application. However, these methods may result in crop damage, development of herbicide resistance, or off-target environmental impacts. Electric interrow weed control presents an alternative, although its potential impact on crop yield requires further investigation. One of the modes of action of electric weed control is the continuous electrode–plant contact method, which passes a current through the weed and into the roots. As the current passes into the roots, it can potentially disperse through the soil to neighboring root systems. Such off-target current dispersion, particularly in moist topsoil with low resistance, poses potential concern for neighboring crops when electric interrow weed control is applied. This research evaluated the continuous electrode–plant contact method, using a Zasso™ XPower machine, in comparison with mowing across three trials conducted in 2022 and 2023. Both treatments were used to remove target lupine (Lupinus albus L.) plants adjacent to a row of non-target lupine. Electric weed control was applied to plants in dry soil or following a simulated rainfall event. The trials demonstrated that electric weed control and mowing did not reduce density and biomass of neighboring non-target lupine plants compared with the untreated control. Likewise, pod and seed production, grain size, and protein, as well as grain germinability and vigor of the resulting seedlings, were not reduced by these weed control tactics. This research used technology that was not fit for purpose in broadscale grain crops but concludes that electric weed control via the continuous electrode–plant contact method or mowing did not result in crop damage. Therefore, it is unlikely that damage will occur using commercial-grade electric weed control or mowing technology designed for large-acreage interrow weed control, thus offering nonchemical weed management options.