Miniaturized surgical devices are promising for the future development of minimally invasive and endoluminal surgery. However, the dexterity and therapeutic functions of these devices are limited. In this paper, a reconfigurable modular robotic system is proposed to perform screening and interventions in the gastrointestinal tract. In the proposed system, millimeter-sized robotic modules are ingested and tasked to assemble into an articulated mechanism in the stomach cavity. The modules are assembled according to the target location to perform precise intervention. Based on this concept, a preliminary report is presented covering the robotic schemes for the endoluminal reconfigurable platform, the design with structural functions, the control strategy, and the interval-based constraint satisfaction algorithm to determine the suitable topologies of the reconfigurable robot for the given task.