In this paper, we propose a novel energy detection (ED) receiver architecture combined with time-of-arrival (TOA) estimation algorithm, compliant to the IEEE 802.15.4a standard. The architecture is based on double overlapping integrators and a sliding correlator. It exploits a series of ternary preamble sequences with perfect autocorrelation property. This property ensures coding gain, which allows an accurate estimation of power delay profile (PDP). To improve TOA estimation, the interpolation of PDP samples is proposed and the architecture is validated by using an ultra-wideband signals measurements platform. These measurements are carried out in line-of-sight and non-line-of-sight multipath environments. The experimental results show that the ranging performances obtained by the proposed architecture are higher than those obtained by the conventional architecture based on a single-integrator in both LOS and NLOS environments.