Water deficit is an environmental factor that constrains crops to express their ecophysiological potential and causes crop yield reduction. Eruca vesicaria has been reported to be one of the most drought-tolerant species in Cruciferae. In this study, polyethylene glycol-simulated drought tolerance was evaluated in one line of Brassica carinata, one line of Brassica napus and 249 Eruca lines based on the principal component analysis (PCA) and unweighted pair-group arithmetic average (UPGMA) cluster analysis. The PCA based on eight drought tolerance indices indicated that the first three components accounted for 85.46% of the total variation, with principal component (PC) 1 accounting for 43.89%, PC2 for 27.85% and PC3 for 13.73% of the total variation. The UPGMA cluster analysis indicated that B. napus cultivar Zhongshuang 9 and Eruca lines could be clustered into five major groups, with group 1 being, in general, drought sensitive, group 2 being slightly–medium drought tolerant, group 3 being drought tolerant, group 4 being highly drought sensitive and group 5 being highly drought tolerant. B. carinata cultivar XB1, as an outstander, showed high drought sensitivity. The UPGMA cluster dendrogram provides a good representation of the similarity matrix (r= 0.68). The drought-tolerant Eruca materials obtained in this study will be valuable for genetic improvement not only in Eruca itself, but also in Brassica crops since they are drought-tolerant lines from a drought-tolerant species.