We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Obtaining complete and accurate information in recruitment registries is essential for matching potential participants to research studies for which they qualify. Since electronic health record (EHR) systems are required to make patient data available to external systems, an interface between EHRs and recruitment registries may improve accuracy and completeness of volunteers’ profiles. We tested this hypothesis on ResearchMatch (RM), a disease- and institution-neutral recruitment registry with 1357 studies across 255 institutions.
Methods:
We developed an interface where volunteers signing up for RM can authorize transfer of demographic data, medical conditions, and medications from the EHR into a registration form. We obtained feedback from a panel of community members to determine acceptability of the planned integration. We then developed the EHR interface and performed an evaluation study of 100 patients to determine whether RM profiles generated with EHR-assisted adjudication included more conditions and medications than those without the EHR connection.
Results:
Community member feedback revealed that members of the public were willing to authenticate into the EHR from RM with proper messaging about choice and privacy. The evaluation study showed that out of 100 participants, 75 included more conditions and 69 included more medications in RM profiles completed with the EHR connection than those without. Participants also completed the EHR-connected profiles in 16 fewer seconds than non-EHR-connected profiles.
Conclusions:
The EHR to RM integration could lead to more complete profiles, less participant burden, and better study matches for many of the over 148,000 volunteers who participate in ResearchMatch.
Many clinical trials leverage real-world data. Typically, these data are manually abstracted from electronic health records (EHRs) and entered into electronic case report forms (CRFs), a time and labor-intensive process that is also error-prone and may miss information. Automated transfer of data from EHRs to eCRFs has the potential to reduce data abstraction and entry burden as well as improve data quality and safety.
Methods:
We conducted a test of automated EHR-to-CRF data transfer for 40 participants in a clinical trial of hospitalized COVID-19 patients. We determined which coordinator-entered data could be automated from the EHR (coverage), and the frequency with which the values from the automated EHR feed and values entered by study personnel for the actual study matched exactly (concordance).
Results:
The automated EHR feed populated 10,081/11,952 (84%) coordinator-completed values. For fields where both the automation and study personnel provided data, the values matched exactly 89% of the time. Highest concordance was for daily lab results (94%), which also required the most personnel resources (30 minutes per participant). In a detailed analysis of 196 instances where personnel and automation entered values differed, both a study coordinator and a data analyst agreed that 152 (78%) instances were a result of data entry error.
Conclusions:
An automated EHR feed has the potential to significantly decrease study personnel effort while improving the accuracy of CRF data.
Poor clinical trial (CT) recruitment is a significant barrier to translating basic science discoveries into medical practice. Improving support for primary care provider (PCP) referral of patients to CTs may be an important part of the solution. However, implementing CT referral support in primary care is not only technically challenging, but also presents challenges at the person and organization levels.
Methods:
The objectives of this study were (1) to characterize provider and clinical supervisor attitudes and perceptions regarding CT research, recruitment, and referrals in primary care and (2) to identify perceived workflow strategies and facilitators relevant to designing a technology-supported primary care CT referral program. Focus groups were conducted with PCPs, directors, and supervisors.
Results:
Analysis indicated widespread support for the intrinsic scientific value of CTs, while at the same time deep concerns regarding protecting patient well-being, perceived loss of control when patients participate in trials, concern about the impact of point-of-care referrals on clinic workflow, the need for standard processes, and the need for CT information that enables referring providers to quickly confirm that the burdens are justified by the benefits at both patient and provider levels. PCP suggestions pertinent to implementing a CT referral decision support system are reported.
Conclusion:
The results from this work contribute to developing an implementation approach to support increased referral of patients to CTs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.