We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a joint partial equidistribution result for common perpendiculars with given density on equidistributing equidistant hypersurfaces, towards a measure supported on truncated stable leaves. We recover a result of Marklof on the joint partial equidistribution of Farey fractions at a given density, and give several analogous arithmetic applications, including in Bruhat–Tits trees.
We determine, up to multiplicative constants, the number of integers $n\leq x$ that have a divisor in $(y,2y]$ and no prime factor $\leq w$. Our estimate is uniform in $x,y,w$. We apply this to determine the order of the number of distinct integers in the $N\times N$ multiplication table, which are free of prime factors $\leq w$, and the number of distinct fractions of the form $(a_{1}a_{2})/(b_{1}b_{2})$ with $1\leq a_{1}\leq b_{1}\leq N$ and $1\leq a_{2}\leq b_{2}\leq N$.
The Frobenius number $F(\boldsymbol{a})$ of a lattice point $\boldsymbol{a}$ in $\mathbb{R}^{d}$ with positive coprime coordinates, is the largest integer which can not be expressed as a non-negative integer linear combination of the coordinates of $\boldsymbol{a}$. Marklof in [The asymptotic distribution of Frobenius numbers, Invent. Math. 181 (2010), 179–207] proved the existence of the limit distribution of the Frobenius numbers, when $\boldsymbol{a}$ is taken to be random in an enlarging domain in $\mathbb{R}^{d}$. We will show that if the domain has piecewise smooth boundary, the error term for the convergence of the distribution function is at most a polynomial in the enlarging factor.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.