We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fluid administration is one of the basic components in the management of neurosurgical patients. However, there is still debate on the ideal fluid. Issues related to adequate volume replacement and effects on the intracranial pressure persist. Studies have demonstrated the harmful effects of colloids over crystalloids. Normal saline has remained a fluid of choice but there is now emerging evidence that it, too, is not free of its harmful effects. Hypertonic saline has also been accepted by many practitioners, but its use and administration require close monitoring. There is now growing evidence on the use of balanced solutions for neurosurgical patients. However, this evidence comes from a small number of studies. Hemodynamic monitoring for fluid therapy in these patients is prudent as these patients are prone to hypovolemia. Dynamic parameters like stroke volume variance and pulse pressure variance are considered more reliable to monitor fluid therapy in comparison to static parameters. This chapter briefly covers various clinical situations in neurosciences with respect to fluid therapy and use of hemodynamic monitoring while providing fluid therapy and its effect on patient outcome.
In this chapter, basic concepts in fluid mechanics are introduced. Firstly, the definition of a fluid is discussed in depth with the conclusion that a fluid is such a substance that cannot generate internal shear stresses by static deformation alone. Secondly, some important properties of fluids are discussed, which includes viscosity of fluids, surface tension of liquids, equation of state for gases, compressibility of gases, and thermal conductivity of gases. Lastly, some important concepts in fluid mechanics are discussed, which includes the concept of continuum and forces in a fluid. Within these discussions, fluid is compared to solid in both microscopic and macroscopic to reveal the mechanism of its mechanical property. Viscosity of fluid is compared to friction and elasticity of solid to give readers a better idea how it works microscopically. Forces is classified as body force and surface force for further analysis. Finally, continuum hypothesis is introduced to deem the fluid as continuously separable, which tells the reader that fluid mechanics is a kind of macroscopic mechanics that conforms Newtonian mechanics and thermodynamics.
This paper argues for a novel conception of Iliadic Tartarus as a fluid liminal space which includes a superterranean context alongside its (traditionally realised) subterranean localisation. A close reading of Iliad 8.477–81 reveals traces of superterranean imagery which, alongside the traditional subterranean reading of 8.13–6 and 14.198–311, allows for the identification of a fluid, dual-model of Tartarean space within the background of the poem. Further, grounded in recent developments regarding dual localisation within Homeric narrative, this paper explores how localisation can reflect narrative and/or thematic concerns, rather than exclusively denoting spatial-physical realities. Thus, the use of geographical imagery within the three Tartarean passages is examined for its narrative/thematic significance, considering themes such as the hierarchy of the gods and narrative developments such as the relocation of Zeus’ positioning within the larger cosmos. The identification of such nuances, in turn, provides a precedent for retaining ‘conflicting’ or fluid geographical space(s) within the narrative despite the ‘contradictions’ that they embody.
The objective of this study was to derive a factor structure of the measures of the National Institutes of Health (NIH) Toolbox Cognition Battery (CB) that is representative of cognitive abilities in a large ethnically diverse cohort of 8-year-old children in Aotearoa New Zealand.
Methods:
Our sample comprised of 4298 8-year-old children from the Growing Up in New Zealand study. We conducted exploratory and confirmatory factor analysis for the NIH Toolbox CB measures to discover the best-fitting factor structure in our sample. Measurement invariance of the identified model was tested across child’s gender, socio-economic status (SES), and ethnicity.
Results:
A three-dimensional factor structure was identified, with one factor of Crystallised Cognition (Reading and Vocabulary), and two distinguished factors of fluid cognition: Fluid Cognition I (Attention/Inhibitory Control, Processing Speed, and Cognitive Flexibility) and Fluid Cognition II (Working Memory, Episodic Memory). The results demonstrate excellent model fit, but reliability of the factors was low. Measurement invariance was confirmed for child’s gender. We found configural, but neither metric nor scalar, invariance across SES and the four major ethnic groups: European, Māori, Pacific Peoples, and Asian.
Conclusion:
Our findings show that, at the age of 8 years, fluid abilities are more strongly associated with one another than with crystallised abilities and that fluid abilities need to be further differentiated. This dimensional structure allows for comparisons across child’s gender, but evaluations across SES and ethnicity within the Aotearoa New Zealand context must be conducted with caution. We recommend using raw scores of the individual NIH Toolbox CB measures in future research.
Two issues relate to prescribing for the surgical patient: managing their previous medication during the metabolically stressful and starved perioperative period, and prescribing drugs required as a consequence of surgery. The author considers both issues, with particular attention paid to perioperative anticoagulation, fluids and analgesia, and prophylaxis.
Chapter 3 is a general, rather short and partly descriptive introduction to general wave theory, without application of any differential equation. The emphasis is on mechanical waves, e.g., acoustic waves.
Chapter 4 introduces basic differential equations and boundary conditions for gravity waves propagating along a water surface. Assuming low wave amplitudes, equations are linearised. Then a quantitative discussion is given for harmonical (sinusoidal) waves propagating either on deep water, or otherwise on water of constant depth. Phase and group velocities are introduced, and then formulas are derived for the potential energy and the kinetic energy associated with a water wave. A closely related result is an important formula for the wave-power level, which equals the wave’s group velocity multiplied by the wave’s stored – kinetic + potential – energy per unit of sea surface. An additional subject is the wave’s momentum density. A section concerns real sea waves. Further, circular waves are mathematically described. Two sections of the chapter concern mathematical tools to be applied in Chapters 5–8 of the book. A final section considers water waves analysed in the time domain.
A liquid-state pyroelectric energy harvester is described and a remarkable capacity to convert a thermal gradient into electrical energy is demonstrated.
Increasing the sustainability of energy generation can be pursued by harvesting extremely low enthalpy sources: low temperature differences between cold and hot reservoirs are easily achieved in every industrial process, both at large and small scales, in plants as well as in small appliances, vehicles, natural environments, and human bodies. This paper presents the assessment and efficiency estimate of a liquid-state pyroelectric energy harvester, based on a colloid containing barium titanate nanoparticles and ferrofluid as a stabilizer. The liquid is set in motion by an external pump to control velocity, in a range similar to the one achieved by Rayleigh–Bénard convection, and the colloid reservoir is heated. The colloid is injected into a Fluorinated Ethylene Propylene pipe where titanium electrodes are placed to collect electrical charges generated by pyroelectricity on the surface of the nanoparticles, reaching 22.4% of the ideal Carnot efficiency of a thermal machine working on the same temperature drop. The maximum extracted electrical power per unit of volume is above 7 mW/m3 with a ΔT between electrodes of 3.9 K.
Ultrasonic sonochemistry and pulsed laser ablation in liquids (LAL) are modern techniques for materials synthesis that are in different ways linked to the formation and collapse of cavitation bubbles. We provide an overview of the physics of laser-induced and acoustically driven bubble oscillations and then describe how the high pressures and temperatures associated with ablation and bubble collapse, as well as emitted shock waves, take part in material synthesis inside and around the bubble. Emphasis is placed on the mechanisms of sonochemical synthesis and modification, and on a step-by-step account of the events from laser ablation through interaction of ablation products with the surrounding liquid up to the modification or aggregation of particles within the bubble. Both sonochemistry and LALs yield nanostructured materials and colloidal nanoparticles with unique properties. The synthesis process has been demonstrated to be scalable.
The magnetorheological (MR) performance of suspensions based on the Fe3O4-deposited carbon nanotubes (CNTs) was investigated by using a vibrating sample magnetometer (VSM) and a rotational rheometer. The Fe3O4-deposited CNTs were synthesized by the reduction process in which nano-Fe3O4 nanoparticles were generated and adsorbed on the surface of CNTs. All tested suspensions displayed excellent MR behaviors with high yield strengths. The morphology was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). It was revealed that Fe3O4 particles adsorbed on the surface of CNT particles led to make the surface topology bumpy and rough which decreased the particle sedimentation velocity. Finally, Turbiscan apparatus was used to test the sedimentation properties of Fe3O4-deposited CNTs suspensions. The suspensions showed excellent stability against sedimentation, much better than bare Fe3O4 particle suspension due to the inherent low density of CNT and its inside pore which can reduce the density mismatch between the nanoparticles and the carrier medium as well as the surface topology change due to the adsorption of Fe3O4.
TiO2 has been widely studied as a photocatalytic material due to its non-toxicity, chemical inertness, and high photocatalytic activity. Here, we explore the operational behavior of a novel TiO2 micropillars array being developed to use solar radiation to treat recycled wastewater in long-duration space missions. A Light Capture model was developed to model light absorption. The Lattice Boltzmann method was used to simulate water flow, and the finite element method was used to model waste mass transfer.
Contrasting distribution patterns of Fe and Ca have been found by electron microprobe analysis (EMPA) mapping of alkali feldspar in a quartz syenite from the Patagonian Andes, Chile. They comprise mainly mantle zoning (Fe-rich, Ca-poor rims and Fe-poor, Ca-rich interiors) and corresponding patchy zoning in grain interiors. The rims are dominantly of turbid, patch microperthites associated with abundant micropores, but there remain clear, optically featureless regions almost free of micropores. The interiors are intricate mixtures of optically clear, featureless regions, and turbid, patch microperthite regions. The clear, featureless regions (Or31 –47) are of remaining exsolution lamellar cryptoperthites. The zoning patterns of Fe and Ca formed by large-scale transport over the feldspar grain during the high-temperature fluid stage. They have been modified by successive transport of Fe and Ca during the later hydrothermal development of patch microperthites and finally by K-feldspathization and albitization. Cathodoluminescence images correspond to the spatial distribution patterns of Fe overprinted by these multi-stage reactions. The original composition of the alkali feldspar before the subsolidus reactions is estimated to have been ~Or34Ab65An1, and the present bulk composition after the reactions is Or40Ab59An0.5.
Chemical vapor deposition (CVD) of graphene has attracted high interest in the electronics industry due to its potential scalability for large-scale production. However, producing a homogeneous thin-film graphene with minimal defects remains a challenge. Studies of processing parameters, such as gas precursors, flow rates, pressures, temperatures, and substrate types, focus on improving the chemical aspect of the deposition. Despite the many reports on such parameters, studies on fluid dynamic aspects also need to be considered since they are crucial factors in scaling up the system for homogenous deposition. Once the deposition kinetics is thoroughly understood, the next vital step is fluid dynamics optimization to design a large-scale system that could deliver the gas uniformly and ensure maximum deposition rate with the desired property. In this review, the influence of fluid dynamics in graphene CVD process was highlighted. The basics and importance of CVD fluid dynamics was introduced. It is understood that the fluid dynamics of gases can be controlled in two ways: via reactor modification and gas composition. This paper begins first with discussions on horizontal tubular reactor modifications. This is followed by mechanical properties of the reactant gasses especially in terms of dimensionless Reynolds number which provides information on gas flow regime for graphene CVD process at atmospheric pressure. Data from the previous literature provide the Reynolds number for various gas compositions and its relation to graphene quality. It has been revealed that hydrogen has a major influence on the fluid dynamic conditions within the CVD, hence affecting the quality of the graphene produced. Focusing on atmospheric pressure CVD, suggestions for up-scaling into larger CVD reactors while maintaining similar fluid properties were also provided.
Transport properties of fluids in nanopores are of both fundamental as well as practical interest. Water flow in carbon nanotubes (CNTs) has received significant attention since the early 2000s for technological applications of CNTs. In this article, we provide a brief overview of modeling the slip and flow enhancement of water in CNTs. A number of experimental and computational studies have found water to flow very fast in CNTs, but the measured flow rates, which are high compared to classical hydrodynamics predictions, are scattered over 2–5 orders of magnitude. Slip lengths of 1 to 500,000 nm, resulting in almost zero to 500,000 flow enhancement, are reported for water in CNTs with diameters of 0.8 to 10 nm. We highlight some challenges in modeling fluid flow in nanopores and outline a few research directions that may resolve the order of slip and flow enhancement of water in CNTs in computational studies.
Ladle refining plays a key role in achieving the quality of the steel since in this reactor temperature and chemical composition is adjusted, elimination of non-metallic inclusions is performed, and also deoxidation and desulphurization are operations taking place in the refining process. Specifically, the metal-slag mass exchanges have not received much attention through scientific studies. In this work, a rigorous study on the mass exchange between metal and slag is presented through a scaled water physical model. In the model, thymol (playing the role of a solute such as sulfur) is added to the water (playing the role of steel) and silicon oil (playing the role of slag) picks up the thymol, while the ladle is agitated with the central injection of gas. The evolution of thymol concentration in time was measured. Also, a mathematical model was developed and cast into the commercial CFD code Fluent Ansys to represent the fluid flow phenomena and the mass transfer through the solution of the continuity equation, the turbulent momentum conservation equations and the species mass conservation equation. There is a good agreement between the measured and the computed results regarding the thymol concentration evolution in water and consequently the mathematical model was validated regarding the mass species metal-slag exchanges and it may be used to study metal-slag exchanges in the steel ladle such as deoxidation or desulphurization.
This article presents a laboratory module developed for undergraduate micro/nano engineering laboratory courses in the mechanical engineering departments at the Massachusetts Institute of Technology and King Fahd University of Petroleum and Minerals. In this laboratory, students fabricate superoleophobic membranes by spray-coating of titania nanoparticles on steel meshes, characterize the surfaces and ability of the membrane to retain oil, and then use these membranes to separate an oil-water mixture. The laboratory module covers nanomaterials, nanomanufacturing, materials characterization, and understanding of the concepts of surface tension and hydrostatics, with oil-water separation as an application. The laboratory experiments are easy to set up based on commercially available tools and materials, which will facilitate implementation of this module in other educational institutions. The significance of oil-water separation in the petroleum industry and integration of concepts from fluid mechanics in the laboratory module will help to illustrate the relevance of nanotechnology to mechanical and materials engineering and its potential to address some of the future societal needs.
Physics forms the core of any Materials Science Programme at undergraduate level. Knowing the properties of materials is fundamental to developing and designing new materials and new applications for known materials.
“Physical Physics” is a physics education approach which is an innovative and promising instruction model that integrates physical activity with mechanics and material properties. It aims to significantly enhance the learning experience and to illustrate how physics works, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying mechanics on a Games Development Programme. It is a structured guided learning approach which provides a scaffold for learners to develop their problem solving skills.
The objective of having applied physics on a programme is to introduce students to the mathematical world. Today students view the world through smart devices. By incorporating student recorded videos into the laboratory experience the student can visualise the mathematical world. Sitting in a classroom learning about material properties does not easily facilitate an understanding of mathematical equations as mapping to a physical reality. In order to get the students motivated and immersed in the real mathematical and physical world, an approach which makes them think about the cause and effect of actions is used. Incorporating physical action with physics enables students to assimilate knowledge and adopt an action problem solving approach to the physics concept. This is an integrated approach that requires synthesis of information from various sources in order to accomplish the task. As a transferable skill, this will ensure that the material scientists will be visionary in their approach to real life problems.
A very realistic 1:17 scale physical model of a 140-ton gas-stirred industrial steel ladle was used to evaluate flow patterns measured by Particle Image Velocimetry (PIV), considering a three-phase system (air-water-oil) to simulate the argon-steel-slag system and to quantify the effect of the slag layer on the flow patterns. The flow patterns were evaluated for a single injector located at the center of the ladle bottom with a gas flow rate of 2.85 l/min, with the presence of a slag phase with a thickness of 0.0066 m. The experimental results obtained in this work are in excellent agreement with the trends reported in the literature for these gas-stirred ladles. Additionally, a mathematical model was developed in a 2D gas-stirred ladle considering the three-phase system built in the physical model. The model was based on the Eulerian approach in which the continuity and the Navier Stokes equations are solved for each phase. Therefore, there were three continuity and six Navier-Stokes equations in the system. Additionally, turbulence in the ladle was computed by using the standard k-epsilon turbulent model. The agreement between numerical simulations and experiments was excellent with respect to velocity fields and turbulent structure, which sets the basis for future works on process analysis with the developed mathematical model, since there are only a few three-phase models reported so far in the literature to predict fluid dynamics in gas-stirred steel ladles.
2D materials have shown to be the next step in semiconductor use and device manufacturing that can allow us to reduce the size of most electronics. One of the novel ways to obtain 2D materials is through liquid exfoliation, in which these materials can be obtained by dispersing the smallest possible particles in different solvents. Once obtained, the solutions can be used to manufacture devices via different processes, one of which is inkjet printing. This process relies in selecting “jettable” fluids, which need to have the necessary combination of viscosity and surface energy or “wettability”. In this work we have modified the viscosities and surface energies of five solvents: IPA (Isopropanol), NMP (N-methyl – 2 pyrrolidone), DMA (Dimethylacetamide), DMF (Dimethylformamide) and a mixture of Cyclohexanone / Terpineol 7:3. We have found an avenue to tailor the viscosity of these solvents though the addition of Ethyl Cellulose (EC), where the viscosity has been increased by up to 15 times at an EC concentration of 6%. For inkjet printing, ideally a viscosity of 4 – 10 cP is recommended, which we have been able to achieve with all of the solvents studied. It has been found that the different solvents present different susceptibilities to the EC addition, with DMA and DMF being the least sensitive to the EC addition. We have also studied the change in the drop dynamics and interactions of the 2D solutions with the substrate. Through this analysis we have found solvents that appear to be attractive for inkjet printing of MoS2 and graphite.