In small populations of monogamous species sex ratio bias and sex-skewed demographic traits could lead to higher extinction probabilities than in other mating systems. Therefore a knowledge of bias in sex ratio, mortality and movement would be useful to determine the optimal strategy for sampling founders prior to reintroduction. We used molecular sexing to sex wild-hatched cohorts of two colonies (one native and one reintroduced) and four released groups of griffon vultures Gyps fulvus in France. In wild-hatched cohorts the sex ratio was not different from equilibrium whatever the year. Similarly no bias was detected in the sex ratio of founding stocks. Recoveries, recaptures, movements and philopatry were not skewed according to sex in wild-hatched and released groups. Our study revealed that no sex bias occurred during the griffon vulture life cycle (i.e. birth, death and movement). Consequently, random sampling may be appropriate to constitute founding stock in reintroduction programmes for monomorphic vultures.