The description is provided for the design and implementation of a system capable of simulating the motions of a quadruped walking robot. The system aims to investigate the feasibility of the robot's walking cycle. This is achieved by considering the robot's stability and more specifically the position of its centre of gravity in relation to its supporting legs. The robot is modelled as a solid body connected to four jointed limbs which are moved through a series of gaits, their positions being calculated at a set of discrete intervals. The resulting information is displayed using a graphical module to present an image of the moving robot and indicate its centre of gravity and support pattern. The complete system indicates the stability of the robot throughout a user-defined gait cycle and is both portable and adaptable.
The system is implemented on a HLH Orion and an Atari 1040ST in the C programming language and is aimed at providing support for the Department of Mechanical Engineering at Edinburgh University where the particular robot is being built.