We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and etiological subtypes. There are several challenges to integrating symptom data from genetically informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data.
Methods
We conducted genome-wide association studies of major depressive symptoms in three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts who were not recruited on the basis of diagnosis (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors.
Results
The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for the skip-structure in community cohorts (use of Depression and Anhedonia as gating symptoms).
Conclusion
The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analyzing genetic association data.
Bipolar disorder (BD) is an overarching diagnostic class defined by the presence of at least one prior manic episode (BD I) or both a prior hypomanic episode and a prior depressive episode (BD II). Traditionally, BD II has been conceptualized as a less severe presentation of BD I, however, extant literature to investigate this claim has been mixed.
Methods
We apply genomic structural equation modeling (Genomic SEM) to investigate divergent genetic pathways across BD's two major subtypes using the most recent GWAS summary statistics from the PGC. We begin by identifying divergences in genetic correlations across 98 external traits using a Bonferroni-corrected threshold. We also use a theoretically informed follow-up model to examine the extent to which the genetic variance in each subtype is explained by schizophrenia and major depression. Lastly, transcriptome-wide SEM (T-SEM) was used to identify neuronal gene expression patterns associated with BD subtypes.
Results
BD II was characterized by significantly larger genetic overlap across non-psychiatric medical and internalizing traits (e.g. heart disease, neuroticism, insomnia), while stronger associations for BD I were absent. Consistent with these findings, follow-up modeling revealed a substantial major depression component for BD II. T-SEM results revealed 35 unique genes associated with shared risk across BD subtypes.
Conclusions
Divergent patterns of genetic relationships across external traits provide support for the distinction of the bipolar subtypes. However, our results also challenge the illness severity conceptualization of BD given stronger genetic overlap across BD II and a range of clinically relevant traits and disorders.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.