We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electronic health record (EHR) data have many quality problems that may affect the outcome of research results and decision support systems. Many methods have been used to evaluate EHR data quality. However, there has yet to be a consensus on the best practice. We used a rule-based approach to assess the variability of EHR data quality across multiple healthcare systems.
Methods:
To quantify data quality concerns across healthcare systems in a PCORnet Clinical Research Network, we used a previously tested rule-based framework tailored to the PCORnet Common Data Model to perform data quality assessment at 13 clinical sites across eight states. Results were compared with the current PCORnet data curation process to explore the differences between both methods. Additional analyses of testosterone therapy prescribing were used to explore clinical care variability and quality.
Results:
The framework detected discrepancies across sites, revealing evident data quality variability between sites. The detailed requirements encoded the rules captured additional data errors with a specificity that aids in remediation of technical errors compared to the current PCORnet data curation process. Other rules designed to detect logical and clinical inconsistencies may also support clinical care variability and quality programs.
Conclusion:
Rule-based EHR data quality methods quantify significant discrepancies across all sites. Medication and laboratory sources are causes of data errors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.