We study compatible toric Sasaki metrics with constant scalar curvature on co-oriented compact toric contact manifolds of Reeb type of dimension at least five. These metrics come in rays of transversal homothety due to the possible rescaling of the Reeb vector fields. We prove that there exist Reeb vector fields for which the transversal Futaki invariant (restricted to the Lie algebra of the torus) vanishes. Using an existence result of E. Legendre [Toric geometry of convex quadrilaterals, J. Symplectic Geom. 9 (2011), 343–385], we show that a co-oriented compact toric contact 5-manifold whose moment cone has four facets admits a finite number of rays of transversal homothetic compatible toric Sasaki metrics with constant scalar curvature. We point out a family of well-known toric contact structures on S2×S3 admitting two non-isometric and non-transversally homothetic compatible toric Sasaki metrics with constant scalar curvature.