This paper presents the development and testing of a haptic interface compatible with a functional magnetic resonance imaging (fMRI) environment for neuroscience human motor control studies. A carbon fiber extension enables us to use the widely accepted and available haptic device Phantom 1.5.
In the first part of the paper development of the mechanical extension together with its kinematic and dynamic models are presented. The second part is focused on testing of the extended haptic interface. The experiment's results both inside and outside the fMRI environment are presented. Tests outside a scanner have shown that the mechanical extension has no notable effect on a subject performance. Experiments with the scanner have confirmed electromagnetic compatibility of the extended haptic system.
At the end it is concluded that the extended haptic device is fully compatible with the fMRI environment, and a virtual environment task that will allow neuroscientists to study a human motor control is proposed.