Objectives: Mechanical circulatory support through left ventricular assist devices (LVADs) improves survival and quality of life for patients with end-stage heart failure who are ineligible for cardiac transplantation. Our aim was to calculate the cost-effectiveness of continuous-flow LVADs.
Methods: A cost-utility analysis from a societal perspective was performed. A lifetime Markov model was set up in which continuous-flow LVAD was compared with optimal medical therapy (OMT). The treatment effect was modeled indirectly combining the results of the REMATCH trial comparing OMT with a pulsatile-flow LVAD and the HeartMate II Destination Therapy Trial comparing a pulsatile-flow LVAD with a continuous-flow LVAD. Cost data were based on real-world financial data of sixty-nine patients with a HeartMate II implantation from the University Medical Centre Utrecht (the Netherlands). One-way and probabilistic sensitivity analyses were performed.
Results: Comparing the continuous-flow HeartMate II with OMT, 3.23 (95 percent confidence interval [CI], 2.18–4.49) life-years were gained (LYG) or 2.83 (95 percent CI, 1.91–3.90) quality-adjusted life-years (QALYs). The cost of an LVAD implant was approximately €126,000, of which the device itself represented the largest cost, being €70,000. Total incremental costs amounted to €299,100 (95 percent CI, 190,500–521,000). This resulted in an incremental cost-effectiveness ratio of €94,100 (95 percent CI, 59,100–160,100) per LYG or €107,600 (95 percent CI, 66,700–181,100) per QALY. Sensitivity analyses showed these results were robust.
Conclusions: Although LVAD destination therapy improves survival and quality of life, it remains a relatively expensive intervention which renders the reimbursement of this therapy questionable.