We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let p be a rational prime. Let F be a totally real number field such that F is unramified over p and the residue degree of any prime ideal of F dividing p is $\leq 2$. In this paper, we show that the eigenvariety for $\mathrm {Res}_{F/\mathbb {Q}}(\mathit {GL}_{2})$, constructed by Andreatta, Iovita, and Pilloni, is proper at integral weights for $p\geq 3$. We also prove a weaker result for $p=2$.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of
$\mathbb {Z}_{S}$
-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod
$\ell $
representations of the absolute Galois group of L, we prove that the same holds also for the
$\mathcal {O}_{L,S}$
-points.
We generalise results of Buzzard, Taylor and Kassaei on analytic continuation of p-adic overconvergent eigenforms over ℚ to the case of p-adic overconvergent Hilbert eigenforms over totally real fields F, under the assumption that p splits completely in F. This includes weight-one forms and has applications to generalisations of Buzzard and Taylor’s main theorem. Next, we follow an idea of Kassaei’s to generalise Coleman’s well-known result that ‘an overconvergent Up-eigenform of small slope is classical’ to the case of p-adic overconvergent Hilbert eigenforms of Iwahori level.
Let ρ be a two-dimensional modulo p representation of the absolute Galois group of a totally real number field. Under the assumptions that ρ has a large image and admits a low-weight crystalline modular deformation we show that any low-weight crystalline deformation of ρ unramified outside a finite set of primes will be modular. We follow the approach of Wiles as generalized by Fujiwara. The main new ingredient is an Ihara-type lemma for the local component at ρ of the middle degree cohomology of a Hilbert modular variety. As an application we relate the algebraic p-part of the value at one of the adjoint L-function associated with a Hilbert modular newform to the cardinality of the corresponding Selmer group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.