Tracking dynamics on the GPS signal is still a big challenge to the receiver designer as the operating conditions are becoming more volatile. Optimizing the stand-alone system for dynamics generally degrades the accuracy of measurements. Therefore, an inertial navigation system (INS) is integrated with GPS to address this issue. Doppler derived from INS can be used to aid the carrier tracking loop for improving the performance under dynamic conditions. However, the derived doppler does not truly reflect the GPS signal doppler due to errors in inertial sensors. As the tracking loop bandwidth is reduced significantly in ultra-tightly integrated systems, any offsets in the aiding doppler creates undesired correlations in the tracking loop resulting in sub-optimal performance of the loop. The paper addresses this issue and also provides a mitigating mechanism to reduce the effects of incorrect estimates of the doppler. It is shown that doppler offsets resulting in a bias in the tracking loop can be appropriately modelled and removed. Mathematical algorithms pertaining to this are provided and the results are summarized. Simulations show that the bias due to aiding doppler offsets could be effectively addressed by appropriate modelling.