In this study, cooling of a constant temperature cube that represents electronic components inserted inside a channel are investigated. For this purpose, primary air with constant velocity is transferred from channel input, and secondary air with impinging jet is transferred to channel upper surface which corresponds to top part of the components. The flows are in contact with the cube that has constant temperature and effects the thermal boundary layer on the cube surfaces to create a heat transfer from cube to fluid. This situation is simulated under turbulence conditions for different values of nozzle jet input velocity (Vj) and channel input velocity (Uc) using Reynolds number between 30000-90000 based on channel input velocity. For this purpose, velocity, temperature, and pressure distributions are obtained for the solution region using CFD package program. As a result, flow and thermal characteristics inside the channel are parametrically calculated based on Reynolds number, Nusselt number, and cube surface temperature.