Decomposition of leaf litter is an important process that releases energy and nutrients in both terrestrial and aquatic environments (Moore et al. 2004, Wallace et al. 1997); therefore, the physical, chemical and biological processes controlling leaf-litter decomposition rates can affect nutrient cycling and productivity in these systems (Cross et al. 2007, Wood et al. 2009). Several studies have shown that leaf decomposition is faster in aquatic than in terrestrial habitats due to relatively constant temperatures, continuous leaching and the physical breakdown of leaves by flowing water (Hutchens & Wallace 2002, Langhans & Tockner 2006, Langhans et al. 2008). Yet, comparatively few studies have examined these relationships in tropical systems with flooded forests. Flooding is a predominant feature of the upper Amazon Basin, but its occurrence and magnitude is complex and not strictly seasonal (Junk et al. 1989). To identify the dominant energy pathways and understand the nutrient dynamics of upper Amazon rain forests, it is imperative to investigate organic matter processing in the aquatic/terrestrial transition zones of these ecosystems.