To investigate the circuitry that mediates binocular interactions in
the tectum of Xenopus frogs, we have begun to identify the tectal
cells that receive ipsilateral eye input relayed via the nucleus
isthmi. Isthmotectal axons were labeled with horseradish peroxidase, and
thin sections were labeled by postembedding immunogold reaction with
antibodies to γ-aminobutyric acid (GABA). Ultrastructural examination
reveals that many isthmotectal axons terminate on GABA-immunoreactive
dendrites. Other isthmotectal axons contact postsynaptic structures that
are unlabeled but have an appearance consistent with previously described
GABA-poor zones of GABA-immunoreactive dendrites. We also examined the
unlabeled inputs to the dendrites that were postsynaptic to filled
isthmotectal axons. The most common nonisthmic inputs to those dendrites
were GABA-immunoreactive processes with symmetric morphology.
Surprisingly, we found only one input with the retinotectal
characteristics of densely packed round, clear vesicles and minimal GABA
immunoreactivity. These results indicate that isthmotectal axons synapse
onto inhibitory interneurons, that retinotectal and isthmotectal axons do
not synapse close to each other on the same dendrites, and that inhibitory
connections are the closest neighbors to isthmotectal synapses.