We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We aimed to examine missing data in FFQ and to assess the effects on estimating dietary intake by comparing between multiple imputation and zero imputation.
Design
We used data from the Okazaki Japan Multi-Institutional Collaborative Cohort (J-MICC) study. A self-administered questionnaire including an FFQ was implemented at baseline (FFQ1) and 5-year follow-up (FFQ2). Missing values in FFQ2 were replaced by corresponding FFQ1 values, multiple imputation and zero imputation.
Setting
A methodological sub-study of the Okazaki J-MICC study.
Participants
Of a total of 7585 men and women aged 35–79 years at baseline, we analysed data for 5120 participants who answered all items in FFQ1 and at least 50% of items in FFQ2.
Results
Among 5120 participants, the proportion of missing data was 3·7%. The increasing number of missing food items in FFQ2 varied with personal characteristics. Missing food items not eaten often in FFQ2 were likely to represent zero intake in FFQ1. Most food items showed that the observed proportion of zero intake was likely to be similar to the probability that the missing value is zero intake. Compared with FFQ1 values, multiple imputation had smaller differences of total energy and nutrient estimates, except for alcohol, than zero imputation.
Conclusions
Our results indicate that missing values due to zero intake, namely missing not at random, in FFQ can be predicted reasonably well from observed data. Multiple imputation performed better than zero imputation for most nutrients and may be applied to FFQ data when missing is low.
FFQs are a popular method of capturing dietary information in epidemiological studies and may be used to derive dietary exposures such as nutrient intake or overall dietary patterns and diet quality. As FFQs can involve large numbers of questions, participants may fail to respond to all questions, leaving researchers to decide how to deal with missing data when deriving intake measures. The aim of the present commentary is to discuss the current practice for dealing with item non-response in FFQs and to propose a research agenda for reporting and handling missing data in FFQs.
Results
Single imputation techniques, such as zero imputation (assuming no consumption of the item) or mean imputation, are commonly used to deal with item non-response in FFQs. However, single imputation methods make strong assumptions about the missing data mechanism and do not reflect the uncertainty created by the missing data. This can lead to incorrect inference about associations between diet and health outcomes. Although the use of multiple imputation methods in epidemiology has increased, these have seldom been used in the field of nutritional epidemiology to address missing data in FFQs. We discuss methods for dealing with item non-response in FFQs, highlighting the assumptions made under each approach.
Conclusions
Researchers analysing FFQs should ensure that missing data are handled appropriately and clearly report how missing data were treated in analyses. Simulation studies are required to enable systematic evaluation of the utility of various methods for handling item non-response in FFQs under different assumptions about the missing data mechanism.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.