A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation framework in MatLab to find optimal hexapod configurations with JEMMC. Based on a real hexapod model, simulation results of the proposed approach are presented. Optimal hexapod configurations were found using the local minimum of the infinity norm of hexapod Jacobian inverse. JEMMC usage in hexapod robots can improve hexapod end-effector positioning accuracy by two times and more.