This paper provides an asymptotic estimate for the expected number of K-level crossings of the random trigonometric polynomial g1 cos x + g2 cos 2x+ … + gn cos nx where gj (j = 1, 2, …, n) are dependent normally distributed random variables with mean zero and variance one. The two cases of ρjr, the correlation coeffiecient between the j-th and r-th coefficients, being either (i) constant, or (ii) ρ∣j−r∣ρ, j ≠ r, 0 < ρ < 1, are considered. It is shown that the previous result for ρjr = 0 still remains valid for both cases.