In this paper we prove: for any positive integers $a$ and $q$ with $\left( a,\,q \right)\,=\,1$, we have uniformly
$$\sum\limits_{\begin{matrix}
n\le N \\
(n,q)=1,n\bar{n}\equiv 1(\,\bmod \,q) \\
\end{matrix}}{\mu (n)e(\frac{a\bar{n}}{q})\ll Nd(q)\left\{ \frac{{{\log }^{\frac{5}{2}}}N}{{{q}^{\frac{1}{2}}}}+\frac{{{q}^{\frac{1}{5}}}{{\log }^{\frac{13}{5}}}N}{{{N}^{\frac{1}{5}}}} \right\}.}$$
This improves the previous bound obtained by D. Hajela, A. Pollington and B. Smith [5].