With the help of various square principles, we obtain results concerning the consistency strength of several statements about trees containing ascent paths, special trees, and strong chain conditions. Building on a result that shows that Todorčević’s principle $\square \left( {\kappa ,\lambda } \right)$ implies an indexed version of $\square \left( {\kappa ,\lambda } \right)$, we show that for all infinite, regular cardinals $\lambda < \kappa$, the principle $\square \left( \kappa \right)$ implies the existence of a κ-Aronszajn tree containing a λ-ascent path. We then provide a complete picture of the consistency strengths of statements relating the interactions of trees with ascent paths and special trees. As a part of this analysis, we construct a model of set theory in which ${\aleph _2}$-Aronszajn trees exist and all such trees contain ${\aleph _0}$-ascent paths. Finally, we use our techniques to show that the assumption that the κ-Knaster property is countably productive and the assumption that every κ-Knaster partial order is κ-stationarily layered both imply the failure of $\square \left( \kappa \right)$.