In the early 1940s David Kendall conjectured that the shapes of the ‘large' (i.e. large area A) convex polygons determined by a standard Poisson line process in the plane tend to circularity (as A increases). Subject only to one heuristic argument, this conjecture and the corresponding two results with A replaced in turn by number of sides N and perimeter S, are proved. Two further similar limiting distributions are considered and, finally, corresponding limiting non-deterministic shape distributions for the small polygons are determined.