The preparation and characterization of intercalated kaolinite is important for industries such as those using nanocomposites, but the number of compounds that can be intercalated into these clay minerals is rather limited. The purpose of this study was to expand the range of possible intercalants by developing intercalation precursors using both single and multiple (co-intercalation) precursor agents. Characterization of the resulting precursors was by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The results show that the most successful single intercalation agent was DMSO and, among the co-intercalation agents, the DMSO/CH3OH system was the best. The preparation and characterization of kao-DMSO-KAc showed that the displacement reaction is the most efficient way to expand the interlayer spacing of kaolinite. At the same time, the lateral-bilayer arrangement of the Ac− in the interlayers was proven by study of de-intercalation of kao-KAc under high temperature.