Magnesium (Mg) is the fourth most abundant mineral in the body and the most abundant intracellular divalent cation, with essential roles in many physiological functions. Consequently, the assessment of Mg status is important for the study of diseases associated with chronic deficiency. In spite of intense research activities there is still no simple, rapid, and accurate laboratory test to determine total body Mg status in humans. However, serum Mg < 0·75 mmol/l is a useful measurement for severe deficiency, and for values between 0·75 and 0·85 mmol/l a loading test can identify deficient subjects. The loading test seems to be the gold standard for Mg status, but is unsuitable in patients with disturbed kidney and intestinal functions when administered orally. There is also a need to reach a consensus on a standardized protocol in order to compare results obtained in different clinical units. Other cellular Mg measurements, such as total or ionized Mg, frequently disagree and more research and systematic evaluations are needed. Muscle Mg appears to be a good marker, but biopsies limit its usefulness, as is the case with bone Mg, the most important but heterogeneous Mg compartment. The development of new and non invasive techniques such as nuclear magnetic resonance (NMR) may provide valuable tools for routinely analysing ionized Mg in tissues. With the development of molecular genetics techniques, the recent discovery of Transient Receptor Potential Melastatin channels offers new possibilities for the sensitive and rapid evaluation of Mg status in humans.