We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ultimate origin or provenance of the masses of orthopyroxene primocrysts is of paramount interest. Many lines of reasoning lead to the conclusion that these were entrained in magma ascending from deeper in the mantle, generated by the continental breakup of Gondwana, somewhere below the local continental crust. The crystals themselves look old, showing signs of long-term annealing, and the crystals are in strong isotopic contrast (Sr 87/86 and O-18) with the basaltic magma itself, with the Opx assemblage being much more radiogenic that the basalt. This is especially marked in the dais rocks in going from Opx dominated layers to more basaltic layers. Moreover, the basaltic magma itself, even when it carries no large primocrysts, is highly heterogeneous isotopically. A profile through the Peneplain Sill at Solitary Rocks, near Pandora’s Spire, in an otherwise thick (330 m) featureless sill, shows strong variations in Sr-87/86. This reflects what others previous show, that the Ferrar are isotopically "noisy" and, remarkably, exhibit isotope patterns similar to the local crust. The obvious answer that this is all from local contamination and weather cannot be true, but instead this comes from the uppermost mantle underlying local crust that has had a long physical association.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.