The origin of the Brγ-line emission in Herbig Ae/Be stars is still an open question and might be related e.g., to a disc wind or the stellar magnetosphere. The study of the continuum and Brγ-emitting region of Herbig Ae/Be stars with high-spectral and high-spatial resolution gives great insights into the sub-au scale hydrogen gas distribution.
We observed the Herbig Be star MWC 120 with the VLTI/AMBER instrument in different spectral channels across the Brγ line with a spectral resolution of R~1500. Using radiative transfer modeling we found a radius of the line emitting region of ~0.4 au that is only two times smaller than the K-band continuum region. This is consistent with a disc wind scenario rather than an origin of magnetospheric emission.
We present near-infrared AMBER (R~12000) observations of the Herbig B[e] star MWC297 in the Brγ-line. We found that the near-infrared continuum emission is ~3.6 times more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged.