We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given the significant health effects, we assessed geospatial patterns of adverse events (AEs), defined as physical or sexual abuse and accidents or poisonings at home, among children in a mixed rural–urban community.
Methods:
We conducted a population-based cohort study of children (<18 years) living in Olmsted County, Minnesota, to assess geographic patterns of AEs between April 2004 and March 2009 using International Classification of Diseases, Ninth Revision codes. We identified hotspots by calculating the relative difference between observed and expected case densities accounting for population characteristics ($$Relative\;Difference = {\rm{ }}{{Observed\;Case\;Density - Expected\;Case\;Density} \over {Expected\;Case\;Density}}$$; hotspot ≥ 0.33) using kernel density methods. A Bayesian geospatial logistic regression model was used to test for association of subject characteristics (including residential features) with AEs, adjusting for age, sex, and socioeconomic status (SES).
Results:
Of the 30,227 eligible children (<18 years), 974 (3.2%) experienced at least one AE. Of the nine total hotspots identified, five were mobile home communities (MHCs). Among non-Hispanic White children (85% of total children), those living in MHCs had higher AE prevalence compared to those outside MHCs, independent of SES (mean posterior odds ratio: 1.80; 95% credible interval: 1.22–2.54). MHC residency in minority children was not associated with higher prevalence of AEs. Of addresses requiring manual correction, 85.5% belonged to mobile homes.
Conclusions:
MHC residence is a significant unrecognized risk factor for AEs among non-Hispanic, White children in a mixed rural–urban community. Given plausible outreach difficulty due to address discrepancies, MHC residents might be a geographically underserved population for clinical care and research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.