Objectives: The objective of this study was to conduct a cost-effectiveness analysis of Herceptin® from the hospital's point of view. This new biotechnological pharmaceutical is a humanized monoclonal antibody that targets the HER2 receptor, an important anti-cancer target.
Methods: A cost model with standard diagnostic and treatment options for breast cancer was set up for a Belgian university hospital in close collaboration with its specialists. Direct and indirect costs were calculated for each diagnostic and treatment option using the micro-costing method. Effectiveness was estimated through a literature study. The model allowed us to take cost consequences in other stages of the model into account and to calculate changes in monthly treatment costs from different “starting points.” With an incremental cost-effectiveness analysis, differences in costs and effectiveness with and without Herceptin® were compared.
Results: Over the complete treatment period from diagnosis until the metastatic phase, monthly costs for the hospital rose from €85.07 to €90.35 for stage I diagnosed breast cancer when adding Herceptin® to the model. In the metastatic phase alone, these costs rose from €1,132.33 to €1,256.23. With Herceptin®, we found an extra cost of €3,981.44 per extra life-month.
Conclusions: This cost-effectiveness ratio was rather high, because Herceptin® was quite expensive and the product was additive in its current use and did not replace existing treatments. Future research will concentrate on alternative applications of Herceptin® based on ongoing Herceptin® trials and expert opinions.