We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Dieck’s splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed-point functors and the motivic Adams isomorphism.
The main purpose of this article is to define a quadratic analogue of the Chern character, the so-called Borel character, that identifies rational higher Grothendieck-Witt groups with a sum of rational Milnor-Witt (MW)-motivic cohomologies and rational motivic cohomologies. We also discuss the notion of ternary laws due to Walter, a quadratic analogue of formal group laws, and compute what we call the additive ternary laws, associated with MW-motivic cohomology. Finally, we provide an application of the Borel character by showing that the Milnor-Witt K-theory of a field F embeds into suitable higher Grothendieck-Witt groups of F modulo explicit torsion.
We prove the analog of the Morel–Voevodsky localization theorem for framed motivic spaces. We deduce that framed motivic spectra are equivalent to motivic spectra over arbitrary schemes, and we give a new construction of the motivic cohomology of arbitrary schemes.
Using a recent computation of the rational minus part of $SH(k)$ by Ananyevskiy, Levine and Panin, a theorem of Cisinski and Déglise and a version of the Röndigs and Østvær theorem, rational stable motivic homotopy theory over an infinite perfect field of characteristic different from 2 is recovered in this paper from finite Milnor–Witt correspondences in the sense of Calmès and Fasel.
Let $S$ be a Noetherian scheme of finite dimension and denote by $\unicode[STIX]{x1D70C}\in [\unicode[STIX]{x1D7D9},\mathbb{G}_{m}]_{\mathbf{SH}(S)}$ the (additive inverse of the) morphism corresponding to $-1\in {\mathcal{O}}^{\times }(S)$. Here $\mathbf{SH}(S)$ denotes the motivic stable homotopy category. We show that the category obtained by inverting $\unicode[STIX]{x1D70C}$ in $\mathbf{SH}(S)$ is canonically equivalent to the (simplicial) local stable homotopy category of the site $S_{\text{r}\acute{\text{e}}\text{t}}$, by which we mean the small real étale site of $S$, comprised of étale schemes over $S$ with the real étale topology. One immediate application is that $\mathbf{SH}(\mathbb{R})[\unicode[STIX]{x1D70C}^{-1}]$ is equivalent to the classical stable homotopy category. In particular this computes all the stable homotopy sheaves of the $\unicode[STIX]{x1D70C}$-local sphere (over $\mathbb{R}$). As further applications we show that $D_{\mathbb{A}^{1}}(k,\mathbb{Z}[1/2])^{-}\simeq \mathbf{DM}_{W}(k)[1/2]$ (improving a result of Ananyevskiy–Levine–Panin), reprove Röndigs’ result that $\text{}\underline{\unicode[STIX]{x1D70B}}_{i}(\unicode[STIX]{x1D7D9}[1/\unicode[STIX]{x1D702},1/2])=0$ for $i=1,2$ and establish some new rigidity results.
For any perfect field k a triangulated category of K-motives is constructed in the style of Voevodsky's construction of the category . To each smooth k-variety X the K-motive is associated in the category and
where pt = Spec(k) and K(X) is Quillen's K-theory of X.
We prove the following result announced by V. Voevodsky. If S is a finite dimensional noetherian scheme such that S = ∪αSpec(Rα) for countable rings Rα, then the stable motivic homotopy category over S satisfies Brown representability.
In this paper, we describe the sheaves of 1-homotopy groups of a simply-connected Chevalley group G; these sheaves can be identified with the sheafification of certain unstable Karoubi-Villamayor K-groups.
We discuss certain calculations in the 2-complete motivic stable homotopy category over an algebraically closed field of characteristic 0. Specifically, we prove the convergence of motivic analogues of the Adams and Adams-Novikov spectral sequences, and as one application, discuss the 2-complete version of the complex motivic J -homomorphism.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.