Multi-view images are acquired by a lensless compressive imaging architecture, which consists of an aperture assembly and multiple sensors. The aperture assembly consists of a two-dimensional array of aperture elements whose transmittance can be individually controlled to implement a compressive sensing matrix. For each transmittance pattern of the aperture assembly, each of the sensors takes a measurement. The measurement vectors from the multiple sensors represent multi-view images of the same scene. We present theoretical framework for multi-view reconstruction and experimental results for enhancing quality of image using compressive measurements from multiple sensors.