We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In many countries of the world millions of people are not registered at birth. However, in order to assess children’s nutritional status it is necessary to have an exact knowledge of their age. In the present paper we discuss the effects of insufficient or imprecise age data on estimates of undernutrition prevalence.
Design
Birth registration rates and levels of stunting, underweight and wasting were retrieved from Multiple Indicator Cluster Surveys and Demographic and Health Surveys of thirty-seven sub-Saharan African countries, considering the subdivision in wealth quintiles. The composition of the cross-sectional sample used for nutritional evaluation was analysed using a permutation test. Logistic regression was applied to analyse the relationship between birth registration and undernutrition. The 95 % probability intervals and Student’s t test were used to evaluate the effect of age bias and error.
Results
Heterogeneous sampling designs were detected among countries, with different percentages of children selected for anthropometry. Further, registered children were slightly more represented within samples used for nutritional analysis than in the total sample. A negative relationship between birth registration and undernutrition was recognized, with registered children showing a better nutritional status than unregistered ones, even within each wealth quintile. The over- or underestimation of undernutrition in the case of systematic over- or underestimation of age, respectively, the latter being more probable, was quantified up to 28 %. Age imprecision was shown to slightly overestimate undernutrition.
Conclusions
Selection bias towards registered children and underestimation of children’s age can lead to an underestimation of the prevalence of undernutrition.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.