We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The goal of the present study was to use a methodology that accurately and reliably describes the availability, price and quality of healthy foods at both the store and community levels using the Nutrition Environment Measures Survey in Stores (NEMS-S), to propose a spatial methodology for integrating these store and community data into measures for defining objective food access.
Setting
Two hundred and sixty-five retail food stores in and within 2 miles (3·2 km) of Flint, Michigan, USA, were mapped using ArcGIS mapping software.
Design
A survey based on the validated NEMS-S was conducted at each retail food store. Scores were assigned to each store based on a modified version of the NEMS-S scoring system and linked to the mapped locations of stores. Neighbourhood characteristics (race and socio-economic distress) were appended to each store. Finally, spatial and kernel density analyses were run on the mapped store scores to obtain healthy food density metrics.
Results
Regression analyses revealed that neighbourhoods with higher socio-economic distress had significantly lower dairy sub-scores compared with their lower-distress counterparts (β coefficient=−1·3; P=0·04). Additionally, supermarkets were present only in neighbourhoods with <60 % African-American population and low socio-economic distress. Two areas in Flint had an overall NEMS-S score of 0.
Conclusions
By identifying areas with poor access to healthy foods via a validated metric, this research can be used help local government and organizations target interventions to high-need areas. Furthermore, the methodology used for the survey and the mapping exercise can be replicated in other cities to provide comparable results.
The aim of the study was to determine the association between dietary outcomes and the neighbourhood food environment (street network distance from home to stores) and consumer food environment (Nutrition Environment Measurement Survey-Stores (NEMS-S) audit).
Design
The neighbourhood food environment was captured by creating 0·5-mile and 1-mile network distance (street distance) around each participant's home and the nearest food venue (convenience store, grocery store, supermarket, farmers' market and produce stand). The consumer food environment was captured by conducting NEMS-S in all grocery stores/supermarkets within 0·5 and 1 mile of participants’ homes.
Setting
Fayette County, KY, USA.
Subjects
Supplemental Nutrition Assessment Program (SNAP) participants, n 147.
Results
SNAP participants who lived within 0·5 mile of at least one farmers’ market/produce stand had higher odds of consuming one serving or more of vegetables (OR = 6·92; 95 % CI 4·09, 11·69), five servings or more of grains (OR = 1·76; 95 % CI 1·01, 3·05) and one serving or more of milk (OR = 3·79; 95 % CI 2·14, 6·71) on a daily basis. SNAP participants who lived within 0·5 mile of stores receiving a high score on the NEMS-S audit reported higher odds of consuming at least one serving of vegetables daily (OR = 3·07; 95 % CI 1·78, 5·31).
Conclusions
Taken together, both the neighbourhood food environment and the consumer food environment are associated with a healthy dietary intake among SNAP participants.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.