We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inspired by Adler’s idea on VC minimal theories [1], we introduce VC-minimal complexity. We show that for any $N\in \mathbb {N}^{>0}$, there is $k_N>0$ such that for any finite bipartite graph $(X,Y;E)$ with VC-minimal complexity $< N$, there exist $X'\subseteq X$, $Y'\subseteq Y$ with $|X'|\geq k_N |X|$, $|Y'|\geq k_N |Y|$ such that $X'\times Y' \subseteq E$ or $X'\times Y'\cap E=\emptyset $.
We give explicit formulas witnessing IP, IP$_{\!n}$, or TP2 in fields with Artin–Schreier extensions. We use them to control p-extensions of mixed characteristic henselian valued fields, allowing us most notably to generalize to the NIP$_{\!n}$ context one way of Anscombe–Jahnke’s classification of NIP henselian valued fields. As a corollary, we obtain that NIP$_{\!n}$ henselian valued fields with NIP residue field are NIP. We also discuss tameness results for NTP2 henselian valued fields.
Let $\mathcal {S}$ be a family of nonempty sets with VC-codensity less than $2$. We prove that, if $\mathcal {S}$ has the $(\omega ,2)$-property (for any infinitely many sets in $\mathcal {S}$, at least two among them intersect), then $\mathcal {S}$ can be partitioned into finitely many subfamilies, each with the finite intersection property. If $\mathcal {S}$ is definable in some first-order structure, then these subfamilies can be chosen definable too.
This is a strengthening of the case $q=2$ of the definable $(p,q)$-conjecture in model theory [9] and the Alon–Kleitman–Matoušek $(p,q)$-theorem in combinatorics [6].
We introduce and study (weakly) semi-equational theories, generalizing equationality in stable theories (in the sense of Srour) to the NIP context. In particular, we establish a connection to distality via one-sided strong honest definitions; demonstrate that certain trees are semi-equational, while algebraically closed valued fields are not weakly semi-equational; and obtain a general criterion for weak semi-equationality of an expansion of a distal structure by a new predicate.
The notion of a complete type can be generalized in a natural manner to allow assigning a value in an arbitrary Boolean algebra
$\mathcal {B}$
to each formula. We show some basic results regarding the effect of the properties of
$\mathcal {B}$
on the behavior of such types, and show they are particularity well behaved in the case of NIP theories. In particular, we generalize the third author’s result about counting types, as well as the notion of a smooth type and extending a type to a smooth one. We then show that Keisler measures are tied to certain Boolean types and show that some of the results can thus be transferred to measures—in particular, giving an alternative proof of the fact that every measure in a dependent theory can be extended to a smooth one. We also study the stable case. We consider this paper as an invitation for more research into the topic of Boolean types.
In light of a gap found by Krupiński, we give a new proof of associativity for the Morley (or “nonforking”) product of invariant measures in NIP theories.
Fix an abelian group
$\Gamma $
and an injective endomorphism
$F\colon \Gamma \to \Gamma $
. Improving on the results of [2], new characterizations are here obtained for the existence of spanning sets, F-automaticity, and F-sparsity. The model theoretic status of these sets is also investigated, culminating with a combinatorial description of the F-sparse sets that are stable in
$(\Gamma ,+)$
, and a proof that the expansion of
$(\Gamma ,+)$
by any F-sparse set is NIP. These methods are also used to show for prime
$p\ge 7$
that the expansion of
$(\mathbb {F}_p[t],+)$
by multiplication restricted to
$t^{\mathbb {N}}$
is NIP.
We set up a general context in which one can prove Sauer–Shelah type lemmas. We apply our general results to answer a question of Bhaskar [1] and give a slight improvement to a result of Malliaris and Terry [7]. We also prove a new Sauer–Shelah type lemma in the context of
$ \operatorname {\textrm{op}}$
-rank, a notion of Guingona and Hill [4].
We study generically stable measures in the local, NIP context. We show that in this setting, a measure is generically stable if and only if it admits a natural finite approximation.
We survey the history of Shelah’s conjecture on strongly dependent fields, give an equivalent formulation in terms of a classification of strongly dependent fields and prove that the conjecture implies that every strongly dependent field has finite dp-rank.
We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek (Duke Mathematical Journal163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary polynomially bounded $o$-minimal expansions of $\mathbb{R}$, and show that it does not hold in $\mathbb{R}_{\exp }$. This provides a new combinatorial characterization of polynomial boundedness for $o$-minimal structures. We also prove an analog for relations definable in $P$-minimal structures, in particular for the field of the $p$-adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society366(9) (2014), 5043–5065), we show that in distal structures the upper bound for $k$-ary definable relations is given by the exponential tower of height $k-1$.
In this paper, we develop three different subjects. We study and prove alternative versions of Hrushovski’s ‘stabilizer theorem’, we generalize part of the basic theory of definably amenable NIP groups to $\text{NTP}_{2}$ theories, and finally, we use all this machinery to study groups with f-generic types definable in bounded pseudo real closed fields.
For G a group definable in a saturated model of a NIP theory T, we prove that there is a smallest type-definable subgroup H of G such that the quotient G / H is stable. This generalizes the existence of G00, the smallest type-definable subgroup of G of bounded index.
Answering a special case of a question of Chernikov and Simon, we show that any non-dividing formula over a model M in a distal NIP theory is a member of a consistent definable family, definable over M.
The aim of this note is to determine whether certain non-o-minimal expansions of o-minimal theories which are known to be NIP, are also distal. We observe that while tame pairs of o-minimal structures and the real field with a discrete multiplicative subgroup have distal theories, dense pairs of o-minimal structures and related examples do not.
We show that dp-minimal valued fields are henselian and give classifications of dp-minimal ordered abelian groups and dp-minimal ordered fields without additional structure.
We prove field quantifier elimination for valued fields endowed with both an analytic structure that is $\unicode[STIX]{x1D70E}$-Henselian and an automorphism that is $\unicode[STIX]{x1D70E}$-Henselian. From this result we can deduce various Ax–Kochen–Eršov type results with respect to completeness and the independence property. The main example we are interested in is the field of Witt vectors on the algebraic closure of $\mathbb{F}_{p}$ endowed with its natural analytic structure and the lifting of the Frobenius. It turns out we can give a (reasonable) axiomatization of its first-order theory and that this theory does not have the independence property.
For an infinite cardinal ${\it\kappa}$, let $\text{ded}\,{\it\kappa}$ denote the supremum of the number of Dedekind cuts in linear orders of size ${\it\kappa}$. It is known that ${\it\kappa}<\text{ded}\,{\it\kappa}\leqslant 2^{{\it\kappa}}$ for all ${\it\kappa}$ and that $\text{ded}\,{\it\kappa}<2^{{\it\kappa}}$ is consistent for any ${\it\kappa}$ of uncountable cofinality. We prove however that $2^{{\it\kappa}}\leqslant \text{ded}(\text{ded}(\text{ded}(\text{ded}\,{\it\kappa})))$ always holds. Using this result we calculate the Hanf numbers for the existence of two-cardinal models with arbitrarily large gaps and for the existence of arbitrarily large models omitting a type in the class of countable dependent first-order theories. Specifically, we show that these bounds are as large as in the class of all countable theories.