We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Non-invasive positive pressure ventilation (NIPPV) is used to treat severe acute respiratory distress. Prehospital NIPPV has been associated with a reduction in both in-hospital mortality and the need for invasive ventilation.
Hypothesis/Problem
The authors of this study examined factors associated with NIPPV failure and evaluated the impact of NIPPV on scene times in a critical care helicopter Emergency Medical Service (HEMS). Non-invasive positive pressure ventilation failure was defined as the need for airway intervention or alternative means of ventilatory support.
Methods
A retrospective chart review of consecutive patients where NIPPV was completed in a critical care HEMS was conducted. Factors associated with NIPPV failure in univariate analyses and from published literature were included in a multivariable, logistic regression model.
Results
From a total of 44 patients, NIPPV failed in 14 (32%); a Glasgow Coma Scale (GCS) <15 at HEMS arrival was associated independently with NIPPV failure (adjusted odds ratio 13.9; 95% CI, 2.4-80.3; P=.003). Mean scene times were significantly longer in patients who failed NIPPV when compared with patients in whom NIPPV was successful (95 minutes vs 51 minutes; 39.4 minutes longer; 95% CI, 16.2-62.5; P=.001).
Conclusion
Patients with a decreased level of consciousness were more likely to fail NIPPV. Furthermore, patients who failed NIPPV had significantly longer scene times. The benefits of NIPPV should be balanced against risks of long scene times by HEMS providers. Knowing risk factors of NIPPV failure could assist HEMS providers to make the safest decision for patients on whether to initiate NIPPV or proceed directly to endotracheal intubation prior to transport.
LeeJS, O’DochartaighD, MacKenzieM, HudsonD, CouperthwaiteS, Villa-RoelC, RoweBH. Factors Associated with Failure of Non-invasive Positive Pressure Ventilation in a Critical Care Helicopter Emergency Medical Service. Prehosp Disaster Med2015; 30(2): 1–5
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.